:: RootR ::  Hosting Order Map Login   Secure Inter-Network Operations  
 
perf_event_open(2) - phpMan

Command: man perldoc info search(apropos)  


PERF_EVENT_OPEN(2)                  Linux Programmer's Manual                  PERF_EVENT_OPEN(2)



NAME
       perf_event_open - set up performance monitoring

SYNOPSIS
       #include <linux/perf_event.h>
       #include <linux/hw_breakpoint.h>

       int perf_event_open(struct perf_event_attr *attr,
                           pid_t pid, int cpu, int group_fd,
                           unsigned long flags);

       Note: There is no glibc wrapper for this system call; see NOTES.

DESCRIPTION
       Given a list of parameters, perf_event_open() returns a file descriptor, for use in subse‐
       quent system calls (read(2), mmap(2), prctl(2), fcntl(2), etc.).

       A call to perf_event_open() creates a file descriptor that  allows  measuring  performance
       information.  Each file descriptor corresponds to one event that is measured; these can be
       grouped together to measure multiple events simultaneously.

       Events can be enabled and disabled in two ways: via ioctl(2) and via  prctl(2).   When  an
       event  is  disabled it does not count or generate overflows but does continue to exist and
       maintain its count value.

       Events come in two flavors: counting and sampled.  A counting event is one  that  is  used
       for  counting  the  aggregate  number  of  events  that occur.  In general, counting event
       results are gathered with a read(2) call.  A sampling event periodically  writes  measure‐
       ments to a buffer that can then be accessed via mmap(2).

   Arguments
       The pid and cpu arguments allow specifying which process and CPU to monitor:

       pid == 0 and cpu == -1
              This measures the calling process/thread on any CPU.

       pid == 0 and cpu >= 0
              This measures the calling process/thread only when running on the specified CPU.

       pid > 0 and cpu == -1
              This measures the specified process/thread on any CPU.

       pid > 0 and cpu >= 0
              This measures the specified process/thread only when running on the specified CPU.

       pid == -1 and cpu >= 0
              This   measures   all  processes/threads  on  the  specified  CPU.   This  requires
              CAP_SYS_ADMIN capability or a /proc/sys/kernel/perf_event_paranoid  value  of  less
              than 1.

       pid == -1 and cpu == -1
              This setting is invalid and will return an error.

       The  group_fd  argument  allows  event groups to be created.  An event group has one event
       which is the group leader.  The leader is created first, with group_fd = -1.  The rest  of
       the  group members are created with subsequent perf_event_open() calls with group_fd being
       set to the file descriptor of the group leader.  (A single event on  its  own  is  created
       with group_fd = -1 and is considered to be a group with only 1 member.)  An event group is
       scheduled onto the CPU as a unit: it will be put onto the CPU only if all of the events in
       the group can be put onto the CPU.  This means that the values of the member events can be
       meaningfully compared—added, divided (to get ratios), and so  on—with  each  other,  since
       they have counted events for the same set of executed instructions.

       The flags argument is formed by ORing together zero or more of the following values:

       PERF_FLAG_FD_CLOEXEC (since Linux 3.14).
              This  flag enables the close-on-exec flag for the created event file descriptor, so
              that the file descriptor is automatically closed on execve(2).  Setting the  close-
              on-exec  flags  at creation time, rather than later with fcntl(2), avoids potential
              race conditions where the calling thread invokes perf_event_open() and fcntl(2)  at
              the same time as another thread calls fork(2) then execve(2).

       PERF_FLAG_FD_NO_GROUP
              This  flag  allows  creating an event as part of an event group but having no group
              leader.  It is unclear why this is useful.

       PERF_FLAG_FD_OUTPUT
              This flag reroutes the output from an event to the group leader.

       PERF_FLAG_PID_CGROUP (since Linux 2.6.39).
              This flag activates  per-container  system-wide  monitoring.   A  container  is  an
              abstraction  that isolates a set of resources for finer-grained control (CPUs, mem‐
              ory, etc.).  In this mode, the event is measured only if the thread running on  the
              monitored  CPU belongs to the designated container (cgroup).  The cgroup is identi‐
              fied by passing a file descriptor opened on its directory in the cgroupfs  filesys‐
              tem.  For instance, if the cgroup to monitor is called test, then a file descriptor
              opened on /dev/cgroup/test (assuming cgroupfs is mounted on  /dev/cgroup)  must  be
              passed  as  the pid parameter.  cgroup monitoring is available only for system-wide
              events and may therefore require extra permissions.

       The perf_event_attr structure provides detailed configuration information  for  the  event
       being created.

           struct perf_event_attr {
               __u32 type;         /* Type of event */
               __u32 size;         /* Size of attribute structure */
               __u64 config;       /* Type-specific configuration */

               union {
                   __u64 sample_period;    /* Period of sampling */
                   __u64 sample_freq;      /* Frequency of sampling */
               };

               __u64 sample_type;  /* Specifies values included in sample */
               __u64 read_format;  /* Specifies values returned in read */

               __u64 disabled       : 1,   /* off by default */
                     inherit        : 1,   /* children inherit it */
                     pinned         : 1,   /* must always be on PMU */
                     exclusive      : 1,   /* only group on PMU */
                     exclude_user   : 1,   /* don't count user */
                     exclude_kernel : 1,   /* don't count kernel */
                     exclude_hv     : 1,   /* don't count hypervisor */
                     exclude_idle   : 1,   /* don't count when idle */
                     mmap           : 1,   /* include mmap data */
                     comm           : 1,   /* include comm data */
                     freq           : 1,   /* use freq, not period */
                     inherit_stat   : 1,   /* per task counts */
                     enable_on_exec : 1,   /* next exec enables */
                     task           : 1,   /* trace fork/exit */
                     watermark      : 1,   /* wakeup_watermark */
                     precise_ip     : 2,   /* skid constraint */
                     mmap_data      : 1,   /* non-exec mmap data */
                     sample_id_all  : 1,   /* sample_type all events */
                     exclude_host   : 1,   /* don't count in host */
                     exclude_guest  : 1,   /* don't count in guest */
                     exclude_callchain_kernel : 1,
                                           /* exclude kernel callchains */
                     exclude_callchain_user   : 1,
                                           /* exclude user callchains */
                     mmap2          :  1,  /* include mmap with inode data */
                     comm_exec      :  1,  /* flag comm events that are due to exec */
                     __reserved_1   : 39;

               union {
                   __u32 wakeup_events;    /* wakeup every n events */
                   __u32 wakeup_watermark; /* bytes before wakeup */
               };

               __u32     bp_type;          /* breakpoint type */

               union {
                   __u64 bp_addr;          /* breakpoint address */
                   __u64 config1;          /* extension of config */
               };

               union {
                   __u64 bp_len;           /* breakpoint length */
                   __u64 config2;          /* extension of config1 */
               };
               __u64 branch_sample_type;   /* enum perf_branch_sample_type */
               __u64 sample_regs_user;     /* user regs to dump on samples */
               __u32 sample_stack_user;    /* size of stack to dump on
                                              samples */
               __u32 __reserved_2;         /* Align to u64 */

           };

       The fields of the perf_event_attr structure are described in more detail below:

       type   This field specifies the overall event type.  It has one of the following values:

              PERF_TYPE_HARDWARE
                     This indicates one of the "generalized" hardware events provided by the ker‐
                     nel.  See the config field definition for more details.

              PERF_TYPE_SOFTWARE
                     This indicates one of the software-defined events  provided  by  the  kernel
                     (even if no hardware support is available).

              PERF_TYPE_TRACEPOINT
                     This  indicates  a  tracepoint provided by the kernel tracepoint infrastruc‐
                     ture.

              PERF_TYPE_HW_CACHE
                     This indicates a  hardware  cache  event.   This  has  a  special  encoding,
                     described in the config field definition.

              PERF_TYPE_RAW
                     This indicates a "raw" implementation-specific event in the config field.

              PERF_TYPE_BREAKPOINT (since Linux 2.6.33)
                     This  indicates  a  hardware breakpoint as provided by the CPU.  Breakpoints
                     can be read/write accesses to an address as well as execution of an instruc‐
                     tion address.

              dynamic PMU
                     Since  Linux 2.6.39, perf_event_open() can support multiple PMUs.  To enable
                     this, a value exported by the kernel can be used in the type field to  indi‐
                     cate  which PMU to use.  The value to use can be found in the sysfs filesys‐
                     tem:    there    is    a    subdirectory    per    PMU    instance     under
                     /sys/bus/event_source/devices.   In  each  subdirectory there is a type file
                     whose content is an integer that  can  be  used  in  the  type  field.   For
                     instance,  /sys/bus/event_source/devices/cpu/type contains the value for the
                     core CPU PMU, which is usually 4.

       size   The size of the perf_event_attr structure for forward/backward compatibility.   Set
              this  using  sizeof(struct  perf_event_attr)  to allow the kernel to see the struct
              size at the time of compilation.

              The related define PERF_ATTR_SIZE_VER0 is set to 64; this was the size of the first
              published  struct.   PERF_ATTR_SIZE_VER1  is  72,  corresponding to the addition of
              breakpoints in Linux 2.6.33.  PERF_ATTR_SIZE_VER2 is 80 corresponding to the  addi‐
              tion  of  branch  sampling in Linux 3.4.  PERF_ATR_SIZE_VER3 is 96 corresponding to
              the addition of sample_regs_user and sample_stack_user in Linux 3.7.

       config This specifies which event you want, in conjunction with the type field.  The  con‐
              fig1  and  config2 fields are also taken into account in cases where 64 bits is not
              enough to fully specify the event.  The encoding of these fields are  event  depen‐
              dent.

              The  most  significant  bit (bit 63) of config signifies CPU-specific (raw) counter
              configuration data; if the most significant bit is unset, the next 7  bits  are  an
              event type and the rest of the bits are the event identifier.

              There  are  various ways to set the config field that are dependent on the value of
              the previously described type field.  What follows are  various  possible  settings
              for config separated out by type.

              If type is PERF_TYPE_HARDWARE, we are measuring one of the generalized hardware CPU
              events.  Not all of these are available on all platforms.  Set config to one of the
              following:

                   PERF_COUNT_HW_CPU_CYCLES
                          Total cycles.  Be wary of what happens during CPU frequency scaling.

                   PERF_COUNT_HW_INSTRUCTIONS
                          Retired  instructions.   Be  careful,  these can be affected by various
                          issues, most notably hardware interrupt counts.

                   PERF_COUNT_HW_CACHE_REFERENCES
                          Cache accesses.  Usually this indicates Last Level Cache  accesses  but
                          this  may  vary depending on your CPU.  This may include prefetches and
                          coherency messages; again this depends on the design of your CPU.

                   PERF_COUNT_HW_CACHE_MISSES
                          Cache misses.  Usually this indicates Last Level Cache misses; this  is
                          intended  to be used in conjunction with the PERF_COUNT_HW_CACHE_REFER‐
                          ENCES event to calculate cache miss rates.

                   PERF_COUNT_HW_BRANCH_INSTRUCTIONS
                          Retired branch instructions.  Prior to  Linux  2.6.34,  this  used  the
                          wrong event on AMD processors.

                   PERF_COUNT_HW_BRANCH_MISSES
                          Mispredicted branch instructions.

                   PERF_COUNT_HW_BUS_CYCLES
                          Bus cycles, which can be different from total cycles.

                   PERF_COUNT_HW_STALLED_CYCLES_FRONTEND (since Linux 3.0)
                          Stalled cycles during issue.

                   PERF_COUNT_HW_STALLED_CYCLES_BACKEND (since Linux 3.0)
                          Stalled cycles during retirement.

                   PERF_COUNT_HW_REF_CPU_CYCLES (since Linux 3.3)
                          Total cycles; not affected by CPU frequency scaling.

              If  type  is  PERF_TYPE_SOFTWARE,  we are measuring software events provided by the
              kernel.  Set config to one of the following:

                   PERF_COUNT_SW_CPU_CLOCK
                          This reports the CPU clock, a high-resolution per-CPU timer.

                   PERF_COUNT_SW_TASK_CLOCK
                          This reports a clock count specific to the task that is running.

                   PERF_COUNT_SW_PAGE_FAULTS
                          This reports the number of page faults.

                   PERF_COUNT_SW_CONTEXT_SWITCHES
                          This counts context switches.   Until  Linux  2.6.34,  these  were  all
                          reported  as user-space events, after that they are reported as happen‐
                          ing in the kernel.

                   PERF_COUNT_SW_CPU_MIGRATIONS
                          This reports the number of times the process has migrated to a new CPU.

                   PERF_COUNT_SW_PAGE_FAULTS_MIN
                          This counts the number of minor page faults.   These  did  not  require
                          disk I/O to handle.

                   PERF_COUNT_SW_PAGE_FAULTS_MAJ
                          This  counts  the number of major page faults.  These required disk I/O
                          to handle.

                   PERF_COUNT_SW_ALIGNMENT_FAULTS (since Linux 2.6.33)
                          This  counts  the  number  of  alignment  faults.   These  happen  when
                          unaligned  memory  accesses  happen; the kernel can handle these but it
                          reduces performance.  This happens only on some architectures (never on
                          x86).

                   PERF_COUNT_SW_EMULATION_FAULTS (since Linux 2.6.33)
                          This counts the number of emulation faults.  The kernel sometimes traps
                          on unimplemented instructions and emulates them for user  space.   This
                          can negatively impact performance.

                   PERF_COUNT_SW_DUMMY (since Linux 3.12)
                          This  is a placeholder event that counts nothing.  Informational sample
                          record types such as mmap or comm must be  associated  with  an  active
                          event.   This dummy event allows gathering such records without requir‐
                          ing a counting event.

              If type is PERF_TYPE_TRACEPOINT, then we are  measuring  kernel  tracepoints.   The
              value  to use in config can be obtained from under debugfs tracing/events/*/*/id if
              ftrace is enabled in the kernel.

              If type is PERF_TYPE_HW_CACHE, then we are measuring a hardware  CPU  cache  event.
              To calculate the appropriate config value use the following equation:

                      (perf_hw_cache_id) | (perf_hw_cache_op_id << 8) |
                      (perf_hw_cache_op_result_id << 16)

                  where perf_hw_cache_id is one of:

                      PERF_COUNT_HW_CACHE_L1D
                             for measuring Level 1 Data Cache

                      PERF_COUNT_HW_CACHE_L1I
                             for measuring Level 1 Instruction Cache

                      PERF_COUNT_HW_CACHE_LL
                             for measuring Last-Level Cache

                      PERF_COUNT_HW_CACHE_DTLB
                             for measuring the Data TLB

                      PERF_COUNT_HW_CACHE_ITLB
                             for measuring the Instruction TLB

                      PERF_COUNT_HW_CACHE_BPU
                             for measuring the branch prediction unit

                      PERF_COUNT_HW_CACHE_NODE (since Linux 3.0)
                             for measuring local memory accesses

                  and perf_hw_cache_op_id is one of

                      PERF_COUNT_HW_CACHE_OP_READ
                             for read accesses

                      PERF_COUNT_HW_CACHE_OP_WRITE
                             for write accesses

                      PERF_COUNT_HW_CACHE_OP_PREFETCH
                             for prefetch accesses

                  and perf_hw_cache_op_result_id is one of

                      PERF_COUNT_HW_CACHE_RESULT_ACCESS
                             to measure accesses

                      PERF_COUNT_HW_CACHE_RESULT_MISS
                             to measure misses

              If  type  is  PERF_TYPE_RAW, then a custom "raw" config value is needed.  Most CPUs
              support events that are not covered by the "generalized" events.  These are  imple‐
              mentation  defined; see your CPU manual (for example the Intel Volume 3B documenta‐
              tion or the AMD BIOS and Kernel Developer Guide).  The libpfm4 library can be  used
              to  translate  from  the  name  in  the  architectural manuals to the raw hex value
              perf_event_open() expects in this field.

              If type is PERF_TYPE_BREAKPOINT, then leave config set to zero.  Its parameters are
              set in other places.

       sample_period, sample_freq
              A  "sampling" counter is one that generates an interrupt every N events, where N is
              given by sample_period.  A sampling counter has sample_period > 0.  When  an  over‐
              flow  interrupt  occurs,  requested  data is recorded in the mmap buffer.  The sam‐
              ple_type field controls what data is recorded on each interrupt.

              sample_freq can be used if you wish to use frequency rather than period.   In  this
              case, you set the freq flag.  The kernel will adjust the sampling period to try and
              achieve the desired rate.  The rate of adjustment is a timer tick.

       sample_type
              The various bits in this field specify which values to include in the sample.  They
              will  be recorded in a ring-buffer, which is available to user space using mmap(2).
              The order in which the values are saved in the sample are documented  in  the  MMAP
              Layout subsection below; it is not the enum perf_event_sample_format order.

              PERF_SAMPLE_IP
                     Records instruction pointer.

              PERF_SAMPLE_TID
                     Records the process and thread IDs.

              PERF_SAMPLE_TIME
                     Records a timestamp.

              PERF_SAMPLE_ADDR
                     Records an address, if applicable.

              PERF_SAMPLE_READ
                     Record counter values for all events in a group, not just the group leader.

              PERF_SAMPLE_CALLCHAIN
                     Records the callchain (stack backtrace).

              PERF_SAMPLE_ID
                     Records a unique ID for the opened event's group leader.

              PERF_SAMPLE_CPU
                     Records CPU number.

              PERF_SAMPLE_PERIOD
                     Records the current sampling period.

              PERF_SAMPLE_STREAM_ID
                     Records  a unique ID for the opened event.  Unlike PERF_SAMPLE_ID the actual
                     ID is returned, not the group leader.  This  ID  is  the  same  as  the  one
                     returned by PERF_FORMAT_ID.

              PERF_SAMPLE_RAW
                     Records  additional  data,  if  applicable.   Usually returned by tracepoint
                     events.

              PERF_SAMPLE_BRANCH_STACK (since Linux 3.4)
                     This provides a record of recent branches, as provided by  CPU  branch  sam‐
                     pling  hardware  (such  as Intel Last Branch Record).  Not all hardware sup‐
                     ports this feature.

                     See the branch_sample_type field  for  how  to  filter  which  branches  are
                     reported.

              PERF_SAMPLE_REGS_USER (since Linux 3.7)
                     Records the current user-level CPU register state (the values in the process
                     before the kernel was called).

              PERF_SAMPLE_STACK_USER (since Linux 3.7)
                     Records the user level stack, allowing stack unwinding.

              PERF_SAMPLE_WEIGHT (since Linux 3.10)
                     Records a hardware provided weight value that expresses how costly the  sam‐
                     pled event was.  This allows the hardware to highlight expensive events in a
                     profile.

              PERF_SAMPLE_DATA_SRC (since Linux 3.10)
                     Records the data source: where in the memory hierarchy the  data  associated
                     with  the  sampled  instruction  came  from.   This is only available if the
                     underlying hardware supports this feature.

              PERF_SAMPLE_IDENTIFIER (since Linux 3.12)
                     Places the SAMPLE_ID value in a fixed position in the record, either at  the
                     beginning (for sample events) or at the end (if a non-sample event).

                     This  was  necessary  because  a sample stream may have records from various
                     different event sources with different sample_type  settings.   Parsing  the
                     event  stream properly was not possible because the format of the record was
                     needed to find SAMPLE_ID, but the format could not be found without  knowing
                     what event the sample belonged to (causing a circular dependency).

                     This  new  PERF_SAMPLE_IDENTIFIER  setting  makes  the  event  stream always
                     parsable by putting SAMPLE_ID in a fixed location, even though it means hav‐
                     ing duplicate SAMPLE_ID values in records.

              PERF_SAMPLE_TRANSACTION (Since Linux 3.13)
                     Records  reasons  for  transactional  memory abort events (for example, from
                     Intel TSX transactional memory support).

                     The precise_ip setting must be greater than 0  and  a  transactional  memory
                     abort  event must be measured or no values will be recorded.  Also note that
                     some perf_event measurements, such as  sampled  cycle  counting,  may  cause
                     extraneous aborts (by causing an interrupt during a transaction).

       read_format
              This   field   specifies   the  format  of  the  data  returned  by  read(2)  on  a
              perf_event_open() file descriptor.

              PERF_FORMAT_TOTAL_TIME_ENABLED
                     Adds the 64-bit time_enabled field.  This can be used to calculate estimated
                     totals if the PMU is overcommitted and multiplexing is happening.

              PERF_FORMAT_TOTAL_TIME_RUNNING
                     Adds the 64-bit time_running field.  This can be used to calculate estimated
                     totals if the PMU is overcommitted and multiplexing is happening.

              PERF_FORMAT_ID
                     Adds a 64-bit unique value that corresponds to the event group.

              PERF_FORMAT_GROUP
                     Allows all counter values in an event group to be read with one read.

       disabled
              The disabled bit specifies whether the counter starts out disabled or enabled.   If
              disabled, the event can later be enabled by ioctl(2), prctl(2), or enable_on_exec.

              When  creating  an event group, typically the group leader is initialized with dis‐
              abled set to 1 and any child  events  are  initialized  with  disabled  set  to  0.
              Despite disabled being 0, the child events will not start until the group leader is
              enabled.

       inherit
              The inherit bit specifies that this counter should count events of child  tasks  as
              well as the task specified.  This applies only to new children, not to any existing
              children at the time the counter is created (nor to any new  children  of  existing
              children).

              Inherit  does  not  work  for  some combinations of read_formats, such as PERF_FOR‐
              MAT_GROUP.

       pinned The pinned bit specifies that the counter should always be on the  CPU  if  at  all
              possible.   It  applies  only to hardware counters and only to group leaders.  If a
              pinned counter cannot be put onto the CPU (e.g., because there are not enough hard‐
              ware  counters  or  because  of a conflict with some other event), then the counter
              goes into an 'error' state, where reads return end-of-file (i.e.,  read(2)  returns
              0) until the counter is subsequently enabled or disabled.

       exclusive
              The exclusive bit specifies that when this counter's group is on the CPU, it should
              be the only group using the CPU's counters.  In the future this may allow  monitor‐
              ing  programs  to  support  PMU features that need to run alone so that they do not
              disrupt other hardware counters.

              Note that many unexpected situations may prevent events with the exclusive bit  set
              from  ever  running.   This includes any users running a system-wide measurement as
              well as any kernel use of the performance counters (including the commonly  enabled
              NMI Watchdog Timer interface).

       exclude_user
              If this bit is set, the count excludes events that happen in user space.

       exclude_kernel
              If this bit is set, the count excludes events that happen in kernel-space.

       exclude_hv
              If  this bit is set, the count excludes events that happen in the hypervisor.  This
              is mainly for PMUs that have built-in support for handling this  (such  as  POWER).
              Extra support is needed for handling hypervisor measurements on most machines.

       exclude_idle
              If set, don't count when the CPU is idle.

       mmap   The  mmap bit enables generation of PERF_RECORD_MMAP samples for every mmap(2) call
              that has PROT_EXEC set.  This allows tools to  notice  new  executable  code  being
              mapped  into a program (dynamic shared libraries for example) so that addresses can
              be mapped back to the original code.

       comm   The comm bit enables tracking of process command name as modified  by  the  exec(2)
              and  prctl(PR_SET_NAME) system calls as well as writing to /proc/self/comm.  If the
              comm_exec flag is also successfully set (possible since Linux 3.16), then the  misc
              flag  PERF_RECORD_MISC_COMM_EXEC can be used to differentiate the exec(2) case from
              the others.

       freq   If this bit is set, then sample_frequency not sample_period is used when setting up
              the sampling interval.

       inherit_stat
              This  bit  enables  saving  of  event counts on context switch for inherited tasks.
              This is meaningful only if the inherit field is set.

       enable_on_exec
              If this bit is set, a counter is automatically enabled after a call to exec(2).

       task   If this bit is set, then fork/exit notifications are included in the ring buffer.

       watermark
              If set, have a sampling interrupt happen when we cross the wakeup_watermark  bound‐
              ary.  Otherwise, interrupts happen after wakeup_events samples.

       precise_ip (since Linux 2.6.35)
              This controls the amount of skid.  Skid is how many instructions execute between an
              event of interest happening and the kernel being able to stop and record the event.
              Smaller  skid  is  better and allows more accurate reporting of which events corre‐
              spond to which instructions, but hardware is often limited with how small this  can
              be.

              The values of this are the following:

              0 -    SAMPLE_IP can have arbitrary skid.

              1 -    SAMPLE_IP must have constant skid.

              2 -    SAMPLE_IP requested to have 0 skid.

              3 -    SAMPLE_IP must have 0 skid.  See also PERF_RECORD_MISC_EXACT_IP.

       mmap_data (since Linux 2.6.36)
              The  counterpart  of  the  mmap field.  This enables generation of PERF_RECORD_MMAP
              samples for mmap(2) calls that do not have PROT_EXEC set (for example data and SysV
              shared memory).

       sample_id_all (since Linux 2.6.38)
              If set, then TID, TIME, ID, STREAM_ID, and CPU can additionally be included in non-
              PERF_RECORD_SAMPLEs if the corresponding sample_type is selected.

              If PERF_SAMPLE_IDENTIFIER is specified, then an additional ID value is included  as
              the  last  value  to ease parsing the record stream.  This may lead to the id value
              appearing twice.

              The layout is described by this pseudo-structure:
                  struct sample_id {
                      { u32 pid, tid; } /* if PERF_SAMPLE_TID set        */
                      { u64 time;     } /* if PERF_SAMPLE_TIME set       */
                      { u64 id;       } /* if PERF_SAMPLE_ID set         */
                      { u64 stream_id;} /* if PERF_SAMPLE_STREAM_ID set  */
                      { u32 cpu, res; } /* if PERF_SAMPLE_CPU set        */
                      { u64 id;       } /* if PERF_SAMPLE_IDENTIFIER set */
                  };

       exclude_host (since Linux 3.2)
              Do not measure time spent in VM host.

       exclude_guest (since Linux 3.2)
              Do not measure time spent in VM guest.

       exclude_callchain_kernel (since Linux 3.7)
              Do not include kernel callchains.

       exclude_callchain_user (since Linux 3.7)
              Do not include user callchains.

       mmap2 (since Linux 3.16)
              Generate an extended executable mmap record that contains enough additional  infor‐
              mation  to  uniquely  identify shared mappings.  The mmap flag must also be set for
              this to work.

       comm_exec (since Linux 3.16)
              This is purely a feature-detection flag, it does not change  kernel  behavior.   If
              this   flag   can   successfully   be   set,   then,  when  comm  is  enabled,  the
              PERF_RECORD_MISC_COMM_EXEC flag will be set in the misc  field  of  a  comm  record
              header  if  the  rename event being reported was caused by a call to exec(2).  This
              allows tools to distinguish between the various types of process renaming.

       wakeup_events, wakeup_watermark
              This union sets how many samples (wakeup_events) or bytes (wakeup_watermark) happen
              before  an overflow signal happens.  Which one is used is selected by the watermark
              bit flag.

              wakeup_events only counts PERF_RECORD_SAMPLE record types.  To receive a signal for
              every incoming PERF_RECORD type set wakeup_watermark to 1.

       bp_type (since Linux 2.6.33)
              This chooses the breakpoint type.  It is one of:

              HW_BREAKPOINT_EMPTY
                     No breakpoint.

              HW_BREAKPOINT_R
                     Count when we read the memory location.

              HW_BREAKPOINT_W
                     Count when we write the memory location.

              HW_BREAKPOINT_RW
                     Count when we read or write the memory location.

              HW_BREAKPOINT_X
                     Count when we execute code at the memory location.

              The values can be combined via a bitwise or, but the combination of HW_BREAKPOINT_R
              or HW_BREAKPOINT_W with HW_BREAKPOINT_X is not allowed.

       bp_addr (since Linux 2.6.33)
              bp_addr address of the breakpoint.  For execution breakpoints this  is  the  memory
              address  of  the  instruction of interest; for read and write breakpoints it is the
              memory address of the memory location of interest.

       config1 (since Linux 2.6.39)
              config1 is used for setting events that need an extra register or otherwise do  not
              fit  in  the  regular  config field.  Raw OFFCORE_EVENTS on Nehalem/Westmere/Sandy‐
              Bridge use this field on 3.3 and later kernels.

       bp_len (since Linux 2.6.33)
              bp_len is the length of the breakpoint being measured if type  is  PERF_TYPE_BREAK‐
              POINT.   Options are HW_BREAKPOINT_LEN_1, HW_BREAKPOINT_LEN_2, HW_BREAKPOINT_LEN_4,
              HW_BREAKPOINT_LEN_8.  For an execution breakpoint, set this to sizeof(long).

       config2 (since Linux 2.6.39)

              config2 is a further extension of the config1 field.

       branch_sample_type (since Linux 3.4)
              If PERF_SAMPLE_BRANCH_STACK is  enabled,  then  this  specifies  what  branches  to
              include in the branch record.

              The  first  part of the value is the privilege level, which is a combination of one
              of the following values.  If the user does not set privilege level explicitly,  the
              kernel  will use the event's privilege level.  Event and branch privilege levels do
              not have to match.

              PERF_SAMPLE_BRANCH_USER
                     Branch target is in user space.

              PERF_SAMPLE_BRANCH_KERNEL
                     Branch target is in kernel space.

              PERF_SAMPLE_BRANCH_HV
                     Branch target is in hypervisor.

              PERF_SAMPLE_BRANCH_PLM_ALL
                     A convenience value that is the three preceding values ORed together.


              In addition to the privilege value, at least one or more of the following bits must
              be set.


              PERF_SAMPLE_BRANCH_ANY
                     Any branch type.

              PERF_SAMPLE_BRANCH_ANY_CALL
                     Any call branch.

              PERF_SAMPLE_BRANCH_ANY_RETURN
                     Any return branch.

              PERF_SAMPLE_BRANCH_IND_CALL
                     Indirect calls.

              PERF_SAMPLE_BRANCH_COND (since Linux 3.16)
                     Conditional branches.

              PERF_SAMPLE_BRANCH_ABORT_TX (since Linux 3.11)
                     Transactional memory aborts.

              PERF_SAMPLE_BRANCH_IN_TX (since Linux 3.11)
                     Branch in transactional memory transaction.

              PERF_SAMPLE_BRANCH_NO_TX (since Linux 3.11)
                     Branch not in transactional memory transaction.


       sample_regs_user (since Linux 3.7)
              This bit mask defines the set of user CPU registers to dump on samples.  The layout
              of the register mask is architecture-specific and described in  the  kernel  header
              arch/ARCH/include/uapi/asm/perf_regs.h.

       sample_stack_user (since Linux 3.7)
              This defines the size of the user stack to dump if PERF_SAMPLE_STACK_USER is speci‐
              fied.

   Reading results
       Once a perf_event_open() file descriptor has been opened, the values of the events can  be
       read from the file descriptor.  The values that are there are specified by the read_format
       field in the attr structure at open time.

       If you attempt to read into a buffer that is not big enough to hold  the  data  ENOSPC  is
       returned

       Here is the layout of the data returned by a read:

       * If PERF_FORMAT_GROUP was specified to allow reading all events in a group at once:

             struct read_format {
                 u64 nr;            /* The number of events */
                 u64 time_enabled;  /* if PERF_FORMAT_TOTAL_TIME_ENABLED */
                 u64 time_running;  /* if PERF_FORMAT_TOTAL_TIME_RUNNING */
                 struct
                     u64 value;     /* The value of the event */
                     u64 id;        /* if PERF_FORMAT_ID */
                 } values[nr];
             };

       * If PERF_FORMAT_GROUP was not specified:

             struct read_format {
                 u64 value;         /* The value of the event */
                 u64 time_enabled;  /* if PERF_FORMAT_TOTAL_TIME_ENABLED */
                 u64 time_running;  /* if PERF_FORMAT_TOTAL_TIME_RUNNING */
                 u64 id;            /* if PERF_FORMAT_ID */
             };

       The values read are as follows:

       nr     The  number of events in this file descriptor.  Only available if PERF_FORMAT_GROUP
              was specified.

       time_enabled, time_running
              Total time the event was enabled and running.  Normally these  are  the  same.   If
              more events are started, then available counter slots on the PMU, then multiplexing
              happens and events run only part of the time.  In that case, the  time_enabled  and
              time running values can be used to scale an estimated value for the count.

       value  An unsigned 64-bit value containing the counter result.

       id     A globally unique value for this particular event, only there if PERF_FORMAT_ID was
              specified in read_format.

   MMAP layout
       When using perf_event_open() in sampled mode, asynchronous events (like  counter  overflow
       or  PROT_EXEC  mmap  tracking) are logged into a ring-buffer.  This ring-buffer is created
       and accessed through mmap(2).

       The mmap size should be 1+2^n pages, where the first  page  is  a  metadata  page  (struct
       perf_event_mmap_page)  that  contains  various bits of information such as where the ring-
       buffer head is.

       Before kernel 2.6.39, there is a bug that means you must allocate a mmap ring buffer  when
       sampling even if you do not plan to access it.

       The structure of the first metadata mmap page is as follows:

           struct perf_event_mmap_page {
               __u32 version;        /* version number of this structure */
               __u32 compat_version; /* lowest version this is compat with */
               __u32 lock;           /* seqlock for synchronization */
               __u32 index;          /* hardware counter identifier */
               __s64 offset;         /* add to hardware counter value */
               __u64 time_enabled;   /* time event active */
               __u64 time_running;   /* time event on CPU */
               union {
                   __u64   capabilities;
                   struct {
                       __u64 cap_usr_time / cap_usr_rdpmc / cap_bit0 : 1,
                             cap_bit0_is_deprecated : 1,
                             cap_user_rdpmc         : 1,
                             cap_user_time          : 1,
                             cap_user_time_zero     : 1,
                   };
               };
               __u16 pmc_width;
               __u16 time_shift;
               __u32 time_mult;
               __u64 time_offset;
               __u64 __reserved[120];   /* Pad to 1k */
               __u64 data_head;         /* head in the data section */
               __u64 data_tail;         /* user-space written tail */
           }

       The  following  list  describes  the  fields in the perf_event_mmap_page structure in more
       detail:

       version
              Version number of this structure.

       compat_version
              The lowest version this is compatible with.

       lock   A seqlock for synchronization.

       index  A unique hardware counter identifier.

       offset When using rdpmc for reads this offset value must be added to the one  returned  by
              rdpmc to get the current total event count.

       time_enabled
              Time the event was active.

       time_running
              Time the event was running.

       cap_usr_time / cap_usr_rdpmc / cap_bit0 (since Linux 3.4)
              There  was a bug in the definition of cap_usr_time and cap_usr_rdpmc from Linux 3.4
              until Linux 3.11.  Both bits were defined to point to the same location, so it  was
              impossible to know if cap_usr_time or cap_usr_rdpmc were actually set.

              Starting  with  3.12  these  are  renamed  to  cap_bit0  and you should use the new
              cap_user_time and cap_user_rdpmc fields instead.


       cap_bit0_is_deprecated (since Linux 3.12)
              If set, this  bit  indicates  that  the  kernel  supports  the  properly  separated
              cap_user_time and cap_user_rdpmc bits.

              If  not-set,  it indicates an older kernel where cap_usr_time and cap_usr_rdpmc map
              to the same bit and thus both features should be used with caution.


       cap_user_rdpmc (since Linux 3.12)
              If the hardware supports user-space read of performance  counters  without  syscall
              (this is the "rdpmc" instruction on x86), then the following code can be used to do
              a read:

                  u32 seq, time_mult, time_shift, idx, width;
                  u64 count, enabled, running;
                  u64 cyc, time_offset;

                  do {
                      seq = pc->lock;
                      barrier();
                      enabled = pc->time_enabled;
                      running = pc->time_running;

                      if (pc->cap_usr_time && enabled != running) {
                          cyc = rdtsc();
                          time_offset = pc->time_offset;
                          time_mult   = pc->time_mult;
                          time_shift  = pc->time_shift;
                      }

                      idx = pc->index;
                      count = pc->offset;

                      if (pc->cap_usr_rdpmc && idx) {
                          width = pc->pmc_width;
                          count += rdpmc(idx - 1);
                      }

                      barrier();
                  } while (pc->lock != seq);

       cap_user_time  (since Linux 3.12)
              This bit indicates the hardware has a constant, nonstop timestamp counter  (TSC  on
              x86).

       cap_user_time_zero (since Linux 3.12)
              Indicates  the  presence  of time_zero which allows mapping timestamp values to the
              hardware clock.

       pmc_width
              If cap_usr_rdpmc, this field provides the bit-width of the  value  read  using  the
              rdpmc or equivalent instruction.  This can be used to sign extend the result like:

                  pmc <<= 64 - pmc_width;
                  pmc >>= 64 - pmc_width; // signed shift right
                  count += pmc;

       time_shift, time_mult, time_offset

              If  cap_usr_time,  these  fields  can  be  used  to  compute  the  time delta since
              time_enabled (in nanoseconds) using rdtsc or similar.

                  u64 quot, rem;
                  u64 delta;
                  quot = (cyc >> time_shift);
                  rem = cyc & ((1 << time_shift) - 1);
                  delta = time_offset + quot * time_mult +
                          ((rem * time_mult) >> time_shift);

              Where time_offset, time_mult, time_shift, and cyc are read  in  the  seqcount  loop
              described  above.  This delta can then be added to enabled and possible running (if
              idx), improving the scaling:

                  enabled += delta;
                  if (idx)
                      running += delta;
                  quot = count / running;
                  rem  = count % running;
                  count = quot * enabled + (rem * enabled) / running;

       time_zero (since Linux 3.12)

              If cap_usr_time_zero is set, then the hardware clock (the TSC timestamp counter  on
              x86) can be calculated from the time_zero, time_mult, and time_shift values:

                  time = timestamp - time_zero;
                  quot = time / time_mult;
                  rem  = time % time_mult;
                  cyc = (quot << time_shift) + (rem << time_shift) / time_mult;

              And vice versa:

                  quot = cyc >> time_shift;
                  rem  = cyc & ((1 << time_shift) - 1);
                  timestamp = time_zero + quot * time_mult +
                      ((rem * time_mult) >> time_shift);

       data_head
              This  points to the head of the data section.  The value continuously increases, it
              does not wrap.  The value needs to be manually wrapped by the size of the mmap buf‐
              fer before accessing the samples.

              On  SMP-capable  platforms,  after  reading  the data_head value, user space should
              issue an rmb().

       data_tail
              When the mapping is PROT_WRITE, the data_tail value should be written by user space
              to  reflect the last read data.  In this case, the kernel will not overwrite unread
              data.

       The following 2^n ring-buffer pages have the layout described below.

       If perf_event_attr.sample_id_all is set, then all event types will  have  the  sample_type
       selected  fields related to where/when (identity) an event took place (TID, TIME, ID, CPU,
       STREAM_ID) described in PERF_RECORD_SAMPLE below,  it  will  be  stashed  just  after  the
       perf_event_header  and the fields already present for the existing fields, that is, at the
       end of the payload.  That way a newer perf.data file  will  be  supported  by  older  perf
       tools, with these new optional fields being ignored.

       The mmap values start with a header:

           struct perf_event_header {
               __u32   type;
               __u16   misc;
               __u16   size;
           };

       Below,  we describe the perf_event_header fields in more detail.  For ease of reading, the
       fields with shorter descriptions are presented first.

       size   This indicates the size of the record.

       misc   The misc field contains additional information about the sample.

              The  CPU   mode   can   be   determined   from   this   value   by   masking   with
              PERF_RECORD_MISC_CPUMODE_MASK  and looking for one of the following (note these are
              not bit masks, only one can be set at a time):

              PERF_RECORD_MISC_CPUMODE_UNKNOWN
                     Unknown CPU mode.

              PERF_RECORD_MISC_KERNEL
                     Sample happened in the kernel.

              PERF_RECORD_MISC_USER
                     Sample happened in user code.

              PERF_RECORD_MISC_HYPERVISOR
                     Sample happened in the hypervisor.

              PERF_RECORD_MISC_GUEST_KERNEL
                     Sample happened in the guest kernel.

              PERF_RECORD_MISC_GUEST_USER
                     Sample happened in guest user code.

              In addition, one of the following bits can be set:

              PERF_RECORD_MISC_MMAP_DATA
                     This is set when the mapping is not executable;  otherwise  the  mapping  is
                     executable.

              PERF_RECORD_MISC_COMM_EXEC
                     This  is set for a PERF_RECORD_COMM record on kernels more recent than Linux
                     3.16 if a process name change was caused by an exec(2) system call.   It  is
                     an  alias  for  PERF_RECORD_MISC_MMAP_DATA since the two values would not be
                     set in the same record.

              PERF_RECORD_MISC_EXACT_IP
                     This indicates that the content  of  PERF_SAMPLE_IP  points  to  the  actual
                     instruction that triggered the event.  See also perf_event_attr.precise_ip.

              PERF_RECORD_MISC_EXT_RESERVED
                     This indicates there is extended data available (currently not used).

       type   The  type  value is one of the below.  The values in the corresponding record (that
              follows the header) depend on the type selected as shown.


              PERF_RECORD_MMAP
                  The MMAP events record the PROT_EXEC mappings so that we  can  correlate  user-
                  space IPs to code.  They have the following structure:

                      struct {
                          struct perf_event_header header;
                          u32    pid, tid;
                          u64    addr;
                          u64    len;
                          u64    pgoff;
                          char   filename[];
                      };

                  pid    is the process ID.

                  tid    is the thread ID.

                  addr   is  the address of the allocated memory.  len is the length of the allo‐
                         cated memory.  pgoff is the page offset of the allocated memory.   file‐
                         name is a string describing the backing of the allocated memory.

              PERF_RECORD_LOST
                  This record indicates when events are lost.

                      struct {
                          struct perf_event_header header;
                          u64 id;
                          u64 lost;
                          struct sample_id sample_id;
                      };

                  id     is the unique event ID for the samples that were lost.

                  lost   is the number of events that were lost.

              PERF_RECORD_COMM
                  This record indicates a change in the process name.

                      struct {
                          struct perf_event_header header;
                          u32 pid;
                          u32 tid;
                          char comm[];
                          struct sample_id sample_id;
                      };

                  pid    is the process ID.

                  tid    is the thread ID.

                  comm   is a string containing the new name of the process.

              PERF_RECORD_EXIT
                  This record indicates a process exit event.

                      struct {
                          struct perf_event_header header;
                          u32 pid, ppid;
                          u32 tid, ptid;
                          u64 time;
                          struct sample_id sample_id;
                      };

              PERF_RECORD_THROTTLE, PERF_RECORD_UNTHROTTLE
                  This record indicates a throttle/unthrottle event.

                      struct {
                          struct perf_event_header header;
                          u64 time;
                          u64 id;
                          u64 stream_id;
                          struct sample_id sample_id;
                      };

              PERF_RECORD_FORK
                  This record indicates a fork event.

                      struct {
                          struct perf_event_header header;
                          u32 pid, ppid;
                          u32 tid, ptid;
                          u64 time;
                          struct sample_id sample_id;
                      };

              PERF_RECORD_READ
                  This record indicates a read event.

                      struct {
                          struct perf_event_header header;
                          u32 pid, tid;
                          struct read_format values;
                          struct sample_id sample_id;
                      };

              PERF_RECORD_SAMPLE
                  This record indicates a sample.

                      struct {
                          struct perf_event_header header;
                          u64   sample_id;  /* if PERF_SAMPLE_IDENTIFIER */
                          u64   ip;         /* if PERF_SAMPLE_IP */
                          u32   pid, tid;   /* if PERF_SAMPLE_TID */
                          u64   time;       /* if PERF_SAMPLE_TIME */
                          u64   addr;       /* if PERF_SAMPLE_ADDR */
                          u64   id;         /* if PERF_SAMPLE_ID */
                          u64   stream_id;  /* if PERF_SAMPLE_STREAM_ID */
                          u32   cpu, res;   /* if PERF_SAMPLE_CPU */
                          u64   period;     /* if PERF_SAMPLE_PERIOD */
                          struct read_format v; /* if PERF_SAMPLE_READ */
                          u64   nr;         /* if PERF_SAMPLE_CALLCHAIN */
                          u64   ips[nr];    /* if PERF_SAMPLE_CALLCHAIN */
                          u32   size;       /* if PERF_SAMPLE_RAW */
                          char  data[size]; /* if PERF_SAMPLE_RAW */
                          u64   bnr;        /* if PERF_SAMPLE_BRANCH_STACK */
                          struct perf_branch_entry lbr[bnr];
                                            /* if PERF_SAMPLE_BRANCH_STACK */
                          u64   abi;        /* if PERF_SAMPLE_REGS_USER */
                          u64   regs[weight(mask)];
                                            /* if PERF_SAMPLE_REGS_USER */
                          u64   size;       /* if PERF_SAMPLE_STACK_USER */
                          char  data[size]; /* if PERF_SAMPLE_STACK_USER */
                          u64   dyn_size;   /* if PERF_SAMPLE_STACK_USER */
                          u64   weight;     /* if PERF_SAMPLE_WEIGHT */
                          u64   data_src;   /* if PERF_SAMPLE_DATA_SRC */
                          u64   transaction;/* if PERF_SAMPLE_TRANSACTION */
                      };

                  sample_id
                      If PERF_SAMPLE_IDENTIFIER is enabled, a 64-bit unique ID is included.  This
                      is a duplication of the PERF_SAMPLE_ID id value, but included at the begin‐
                      ning of the sample so parsers can easily obtain the value.

                  ip  If  PERF_SAMPLE_IP  is  enabled, then a 64-bit instruction pointer value is
                      included.

                  pid, tid
                      If PERF_SAMPLE_TID is enabled, then a 32-bit process ID and  32-bit  thread
                      ID are included.

                  time
                      If  PERF_SAMPLE_TIME is enabled, then a 64-bit timestamp is included.  This
                      is obtained via local_clock() which is a hardware  timestamp  if  available
                      and the jiffies value if not.

                  addr
                      If PERF_SAMPLE_ADDR is enabled, then a 64-bit address is included.  This is
                      usually the address of a tracepoint, breakpoint, or software event;  other‐
                      wise the value is 0.

                  id  If PERF_SAMPLE_ID is enabled, a 64-bit unique ID is included.  If the event
                      is a member of an event group, the group leader ID is returned.  This ID is
                      the same as the one returned by PERF_FORMAT_ID.

                  stream_id
                      If  PERF_SAMPLE_STREAM_ID  is  enabled,  a  64-bit  unique  ID is included.
                      Unlike PERF_SAMPLE_ID the actual ID is  returned,  not  the  group  leader.
                      This ID is the same as the one returned by PERF_FORMAT_ID.

                  cpu, res
                      If  PERF_SAMPLE_CPU is enabled, this is a 32-bit value indicating which CPU
                      was being used, in addition to a reserved (unused) 32-bit value.

                  period
                      If PERF_SAMPLE_PERIOD is enabled, a 64-bit  value  indicating  the  current
                      sampling period is written.

                  v   If PERF_SAMPLE_READ is enabled, a structure of type read_format is included
                      which has values for all events in the event group.   The  values  included
                      depend on the read_format value used at perf_event_open() time.

                  nr, ips[nr]
                      If PERF_SAMPLE_CALLCHAIN is enabled, then a 64-bit number is included which
                      indicates how many following 64-bit instruction pointers will follow.  This
                      is the current callchain.

                  size, data[size]
                      If  PERF_SAMPLE_RAW  is  enabled,  then  a  32-bit value indicating size is
                      included followed by an array of 8-bit values of length size.   The  values
                      are padded with 0 to have 64-bit alignment.

                      This  RAW  record  data is opaque with respect to the ABI.  The ABI doesn't
                      make any promises with respect to the stability of its content, it may vary
                      depending on event, hardware, and kernel version.

                  bnr, lbr[bnr]
                      If  PERF_SAMPLE_BRANCH_STACK is enabled, then a 64-bit value indicating the
                      number of records is included, followed by bnr perf_branch_entry structures
                      which each include the fields:

                      from   This indicates the source instruction (may not be a branch).

                      to     The branch target.

                      mispred
                             The branch target was mispredicted.

                      predicted
                             The branch target was predicted.

                      in_tx (since Linux 3.11)
                             The branch was in a transactional memory transaction.

                      abort (since Linux 3.11)
                             The branch was in an aborted transactional memory transaction.


                      The  entries are from most to least recent, so the first entry has the most
                      recent branch.

                      Support for mispred and predicted is optional; if not supported, both  val‐
                      ues will be 0.

                      The type of branches recorded is specified by the branch_sample_type field.


                  abi, regs[weight(mask)]
                      If  PERF_SAMPLE_REGS_USER  is  enabled,  then  the  user  CPU registers are
                      recorded.

                      The abi field is one of PERF_SAMPLE_REGS_ABI_NONE,  PERF_SAMPLE_REGS_ABI_32
                      or PERF_SAMPLE_REGS_ABI_64.

                      The  regs field is an array of the CPU registers that were specified by the
                      sample_regs_user attr field.  The number of values is the  number  of  bits
                      set in the sample_regs_user bit mask.

                  size, data[size], dyn_size
                      If  PERF_SAMPLE_STACK_USER  is  enabled,  then  the user stack is recorded.
                      This can be used to generate stack backtraces.  size is the size  requested
                      by  the user in sample_stack_user or else the maximum record size.  data is
                      the stack data (a raw dump of the memory pointed to by the stack pointer at
                      the time of sampling).  dyn_size is the amount of data actually dumped (can
                      be less than size).

                  weight
                      If PERF_SAMPLE_WEIGHT is enabled, then a 64-bit value provided by the hard‐
                      ware  is  recorded  that  indicates  how costly the event was.  This allows
                      expensive events to stand out more clearly in profiles.

                  data_src
                      If PERF_SAMPLE_DATA_SRC is enabled, then a 64-bit value is recorded that is
                      made up of the following fields:

                      mem_op
                          Type of opcode, a bitwise combination of:

                          PERF_MEM_OP_NA          Not available
                          PERF_MEM_OP_LOAD        Load instruction
                          PERF_MEM_OP_STORE       Store instruction
                          PERF_MEM_OP_PFETCH      Prefetch
                          PERF_MEM_OP_EXEC        Executable code

                      mem_lvl
                          Memory  hierarchy  level hit or miss, a bitwise combination of the fol‐
                          lowing, shifted left by PERF_MEM_LVL_SHIFT:

                          PERF_MEM_LVL_NA         Not available
                          PERF_MEM_LVL_HIT        Hit
                          PERF_MEM_LVL_MISS       Miss
                          PERF_MEM_LVL_L1         Level 1 cache
                          PERF_MEM_LVL_LFB        Line fill buffer
                          PERF_MEM_LVL_L2         Level 2 cache
                          PERF_MEM_LVL_L3         Level 3 cache
                          PERF_MEM_LVL_LOC_RAM    Local DRAM
                          PERF_MEM_LVL_REM_RAM1   Remote DRAM 1 hop
                          PERF_MEM_LVL_REM_RAM2   Remote DRAM 2 hops
                          PERF_MEM_LVL_REM_CCE1   Remote cache 1 hop
                          PERF_MEM_LVL_REM_CCE2   Remote cache 2 hops
                          PERF_MEM_LVL_IO         I/O memory
                          PERF_MEM_LVL_UNC        Uncached memory

                      mem_snoop
                          Snoop mode, a bitwise combination of the  following,  shifted  left  by
                          PERF_MEM_SNOOP_SHIFT:

                          PERF_MEM_SNOOP_NA       Not available
                          PERF_MEM_SNOOP_NONE     No snoop
                          PERF_MEM_SNOOP_HIT      Snoop hit
                          PERF_MEM_SNOOP_MISS     Snoop miss
                          PERF_MEM_SNOOP_HITM     Snoop hit modified

                      mem_lock
                          Lock  instruction, a bitwise combination of the following, shifted left
                          by PERF_MEM_LOCK_SHIFT:

                          PERF_MEM_LOCK_NA        Not available
                          PERF_MEM_LOCK_LOCKED    Locked transaction

                      mem_dtlb
                          TLB access hit or miss, a bitwise combination of the following, shifted
                          left by PERF_MEM_TLB_SHIFT:

                          PERF_MEM_TLB_NA         Not available
                          PERF_MEM_TLB_HIT        Hit
                          PERF_MEM_TLB_MISS       Miss
                          PERF_MEM_TLB_L1         Level 1 TLB
                          PERF_MEM_TLB_L2         Level 2 TLB
                          PERF_MEM_TLB_WK         Hardware walker
                          PERF_MEM_TLB_OS         OS fault handler

                  transaction
                      If the PERF_SAMPLE_TRANSACTION flag is set, then a 64-bit field is recorded
                      describing the sources of any transactional memory aborts.

                      The field is a bitwise combination of the following values:

                      PERF_TXN_ELISION
                             Abort from an elision type transaction (Intel-CPU-specific).

                      PERF_TXN_TRANSACTION
                             Abort from a generic transaction.

                      PERF_TXN_SYNC
                             Synchronous abort (related to the reported instruction).

                      PERF_TXN_ASYNC
                             Asynchronous abort (not related to the reported instruction).

                      PERF_TXN_RETRY
                             Retryable abort (retrying the transaction may have succeeded).

                      PERF_TXN_CONFLICT
                             Abort due to memory conflicts with other threads.

                      PERF_TXN_CAPACITY_WRITE
                             Abort due to write capacity overflow.

                      PERF_TXN_CAPACITY_READ
                             Abort due to read capacity overflow.

                      In addition, a user-specified abort code can be obtained from the  high  32
                      bits  of  the  field  by shifting right by PERF_TXN_ABORT_SHIFT and masking
                      with PERF_TXN_ABORT_MASK.

              PERF_RECORD_MMAP2
                  This record includes extended information on mmap(2) calls returning executable
                  mappings.   The  format  is similar to that of the PERF_RECORD_MMAP record, but
                  includes extra values that allow uniquely identifying shared mappings.

                      struct {
                          struct perf_event_header header;
                          u32 pid;
                          u32 tid;
                          u64 addr;
                          u64 len;
                          u64 pgoff;
                          u32 maj;
                          u32 min;
                          u64 ino;
                          u64 ino_generation;
                          u32 prot;
                          u32 flags;
                          char filename[];
                          struct sample_id sample_id;
                      };

                  pid    is the process ID.

                  tid    is the thread ID.

                  addr   is the address of the allocated memory.

                  len    is the length of the allocated memory.

                  pgoff  is the page offset of the allocated memory.

                  maj    is the major ID of the underlying device.

                  min    is the minor ID of the underlying device.

                  ino    is the inode number.

                  ino_generation
                         is the inode generation.

                  prot   is the protection information.

                  flags  is the flags information.

                  filename
                         is a string describing the backing of the allocated memory.

   Signal overflow
       Events can be set to deliver a signal when a threshold is crossed.  The signal handler  is
       set up using the poll(2), select(2), epoll(2) and fcntl(2), system calls.

       To generate signals, sampling must be enabled (sample_period must have a nonzero value).

       There are two ways to generate signals.

       The  first is to set a wakeup_events or wakeup_watermark value that will generate a signal
       if a certain number of samples or bytes have been written to the  mmap  ring  buffer.   In
       this case, a signal of type POLL_IN is sent.

       The other way is by use of the PERF_EVENT_IOC_REFRESH ioctl.  This ioctl adds to a counter
       that decrements each time the event overflows.  When nonzero, a POLL_IN signal is sent  on
       overflow, but once the value reaches 0, a signal is sent of type POLL_HUP and the underly‐
       ing event is disabled.

       Note: on newer kernels (since at least as early as Linux 3.2), a signal  is  provided  for
       every overflow, even if wakeup_events is not set.

   rdpmc instruction
       Starting with Linux 3.4 on x86, you can use the rdpmc instruction to get low-latency reads
       without having to enter the kernel.  Note that using rdpmc is not necessarily faster  than
       other methods for reading event values.

       Support for this can be detected with the cap_usr_rdpmc field in the mmap page; documenta‐
       tion on how to calculate event values can be found in that section.

   perf_event ioctl calls
       Various ioctls act on perf_event_open() file descriptors:

       PERF_EVENT_IOC_ENABLE
              This enables the individual event or event group specified by the  file  descriptor
              argument.

              If  the  PERF_IOC_FLAG_GROUP bit is set in the ioctl argument, then all events in a
              group are enabled, even if the event specified is not the  group  leader  (but  see
              BUGS).

       PERF_EVENT_IOC_DISABLE
              This  disables the individual counter or event group specified by the file descrip‐
              tor argument.

              Enabling or disabling the leader of a group enables or disables the  entire  group;
              that is, while the group leader is disabled, none of the counters in the group will
              count.  Enabling or disabling a member of a group other  than  the  leader  affects
              only  that  counter;  disabling  a  non-leader stops that counter from counting but
              doesn't affect any other counter.

              If the PERF_IOC_FLAG_GROUP bit is set in the ioctl argument, then all events  in  a
              group  are  disabled,  even if the event specified is not the group leader (but see
              BUGS).

       PERF_EVENT_IOC_REFRESH
              Non-inherited overflow counters can use this to enable a counter for  a  number  of
              overflows  specified by the argument, after which it is disabled.  Subsequent calls
              of this ioctl add the argument value to the current count.  A signal  with  POLL_IN
              set  will  happen  on  each overflow until the count reaches 0; when that happens a
              signal with POLL_HUP set is sent and the event is disabled.  Using an argument of 0
              is considered undefined behavior.

       PERF_EVENT_IOC_RESET
              Reset  the  event  count  specified  by the file descriptor argument to zero.  This
              resets only the counts; there is no way to reset the multiplexing  time_enabled  or
              time_running values.

              If  the  PERF_IOC_FLAG_GROUP bit is set in the ioctl argument, then all events in a
              group are reset, even if the event specified is  not  the  group  leader  (but  see
              BUGS).

       PERF_EVENT_IOC_PERIOD
              This updates the overflow period for the event.

              Since  Linux  3.7 (on ARM) and Linux 3.14 (all other architectures), the new period
              takes effect immediately.  On older kernels, the new period  did  not  take  effect
              until after the next overflow.

              The argument is a pointer to a 64-bit value containing the desired new period.

              Prior to Linux 2.6.36 this ioctl always failed due to a bug in the kernel.


       PERF_EVENT_IOC_SET_OUTPUT
              This  tells the kernel to report event notifications to the specified file descrip‐
              tor rather than the default one.  The file descriptors must all be on the same CPU.

              The argument specifies the desired file descriptor,  or  -1  if  output  should  be
              ignored.

       PERF_EVENT_IOC_SET_FILTER (since Linux 2.6.33)
              This adds an ftrace filter to this event.

              The argument is a pointer to the desired ftrace filter.

       PERF_EVENT_IOC_ID (since Linux 3.12)
              This returns the event ID value for the given event file descriptor.

              The argument is a pointer to a 64-bit unsigned integer to hold the result.

   Using prctl
       A  process  can  enable  or disable all the event groups that are attached to it using the
       prctl(2)  PR_TASK_PERF_EVENTS_ENABLE  and  PR_TASK_PERF_EVENTS_DISABLE  operations.   This
       applies  to  all  counters  on  the calling process, whether created by this process or by
       another, and does not affect any counters that this process  has  created  on  other  pro‐
       cesses.   It  enables  or  disables  only  the group leaders, not any other members in the
       groups.

   perf_event related configuration files
       Files in /proc/sys/kernel/

           /proc/sys/kernel/perf_event_paranoid

                  The perf_event_paranoid file can be set to restrict access to  the  performance
                  counters.

                  2   only allow user-space measurements.

                  1   allow both kernel and user measurements (default).

                  0   allow access to CPU-specific data but not raw tracepoint samples.

                  -1  no restrictions.

                  The existence of the perf_event_paranoid file is the official method for deter‐
                  mining if a kernel supports perf_event_open().

           /proc/sys/kernel/perf_event_max_sample_rate

                  This sets the maximum sample rate.  Setting this too high can  allow  users  to
                  sample  at a rate that impacts overall machine performance and potentially lock
                  up the machine.  The default value is 100000 (samples per second).

           /proc/sys/kernel/perf_event_mlock_kb

                  Maximum number of pages an unprivileged user can mlock(2).  The default is  516
                  (kB).

       Files in /sys/bus/event_source/devices/
           Since Linux 2.6.34, the kernel supports having multiple PMUs available for monitoring.
           Information   on   how   to    program    these    PMUs    can    be    found    under
           /sys/bus/event_source/devices/.  Each subdirectory corresponds to a different PMU.

           /sys/bus/event_source/devices/*/type (since Linux 2.6.38)
                  This  contains an integer that can be used in the type field of perf_event_attr
                  to indicate that you wish to use this PMU.

           /sys/bus/event_source/devices/*/rdpmc (since Linux 3.4)
                  If this file is 1, then direct user-space access  to  the  performance  counter
                  registers  is allowed via the rdpmc instruction.  This can be disabled by echo‐
                  ing 0 to the file.

           /sys/bus/event_source/devices/*/format/ (since Linux 3.4)
                  This subdirectory contains information on the  architecture-specific  subfields
                  available  for  programming  the  various  config fields in the perf_event_attr
                  struct.

                  The content of each file is the name of the config field, followed by a  colon,
                  followed  by  a series of integer bit ranges separated by commas.  For example,
                  the file event may contain the value  config1:1,6-10,44  which  indicates  that
                  event    is   an   attribute   that   occupies   bits   1,6-10,   and   44   of
                  perf_event_attr::config1.

           /sys/bus/event_source/devices/*/events/ (since Linux 3.4)
                  This subdirectory contains files with  predefined  events.   The  contents  are
                  strings describing the event settings expressed in terms of the fields found in
                  the previously mentioned ./format/ directory.  These are not  necessarily  com‐
                  plete  lists  of  all events supported by a PMU, but usually a subset of events
                  deemed useful or interesting.

                  The content of each file is a list of  attribute  names  separated  by  commas.
                  Each entry has an optional value (either hex or decimal).  If no value is spec‐
                  ified, then it is assumed to be a single-bit field with a value of 1.  An exam‐
                  ple entry may look like this: event=0x2,inv,ldlat=3.

           /sys/bus/event_source/devices/*/uevent
                  This file is the standard kernel device interface for injecting hotplug events.

           /sys/bus/event_source/devices/*/cpumask (since Linux 3.7)
                  The  cpumask  file  contains a comma-separated list of integers that indicate a
                  representative CPU number for each socket (package) on the  motherboard.   This
                  is  needed  when setting up uncore or northbridge events, as those PMUs present
                  socket-wide events.

RETURN VALUE
       perf_event_open() returns the new file descriptor, or -1 if an error  occurred  (in  which
       case, errno is set appropriately).

ERRORS
       The  errors returned by perf_event_open() can be inconsistent, and may vary across proces‐
       sor architectures and performance monitoring units.

       E2BIG  Returned  if  the  perf_event_attr  size  value  is   too   small   (smaller   than
              PERF_ATTR_SIZE_VER0),  too big (larger than the page size), or larger than the ker‐
              nel supports and the extra bytes  are  not  zero.   When  E2BIG  is  returned,  the
              perf_event_attr  size  field  is  overwritten  by  the kernel to be the size of the
              structure it was expecting.

       EACCES Returned when the requested event requires CAP_SYS_ADMIN  permissions  (or  a  more
              permissive  perf_event  paranoid setting).  Some common cases where an unprivileged
              process may encounter this error: attaching to a process owned by a different user;
              monitoring  all processes on a given CPU (i.e., specifying the pid argument as -1);
              and not setting exclude_kernel when the paranoid setting requires it.

       EBADF  Returned if the group_fd file descriptor is not valid, or, if  PERF_FLAG_PID_CGROUP
              is set, the cgroup file descriptor in pid is not valid.

       EFAULT Returned if the attr pointer points at an invalid memory address.

       EINVAL Returned  if  the  specified event is invalid.  There are many possible reasons for
              this.  A not-exhaustive list: sample_freq is higher than the maximum  setting;  the
              cpu  to  monitor does not exist; read_format is out of range; sample_type is out of
              range; the flags value is out of range; exclusive or pinned set and  the  event  is
              not  a group leader; the event config values are out of range or set reserved bits;
              the generic event selected is not supported; or there is not enough room to add the
              selected event.

       EMFILE Each opened event uses one file descriptor.  If a large number of events are opened
              the per-user file descriptor limit (often 1024) will be hit and no more events  can
              be created.

       ENODEV Returned when the event involves a feature not supported by the current CPU.

       ENOENT Returned  if  the  type setting is not valid.  This error is also returned for some
              unsupported generic events.

       ENOSPC Prior to Linux 3.3, if there  was  not  enough  room  for  the  event,  ENOSPC  was
              returned.   In  Linux 3.3, this was changed to EINVAL.  ENOSPC is still returned if
              you try to add more breakpoint events than supported by the hardware.

       ENOSYS Returned if PERF_SAMPLE_STACK_USER is set in sample_type and it is not supported by
              hardware.

       EOPNOTSUPP
              Returned  if  an event requiring a specific hardware feature is requested but there
              is no hardware support.  This includes requesting low-skid events if not supported,
              branch  tracing  if it is not available, sampling if no PMU interrupt is available,
              and branch stacks for software events.

       EPERM  Returned on many (but  not  all)  architectures  when  an  unsupported  exclude_hv,
              exclude_idle, exclude_user, or exclude_kernel setting is specified.

              It can also happen, as with EACCES, when the requested event requires CAP_SYS_ADMIN
              permissions (or a more permissive perf_event paranoid setting).  This includes set‐
              ting  a  breakpoint  on  a  kernel address, and (since Linux 3.13) setting a kernel
              function-trace tracepoint.

       ESRCH  Returned if attempting to attach to a process that does not exist.

VERSION
       perf_event_open() was introduced in Linux 2.6.31 but was called  perf_counter_open().   It
       was renamed in Linux 2.6.32.

CONFORMING TO
       This  perf_event_open()  system  call  Linux-  specific and should not be used in programs
       intended to be portable.

NOTES
       Glibc does not provide a wrapper for this system call; call it using syscall(2).  See  the
       example below.

       The  official  way  of knowing if perf_event_open() support is enabled is checking for the
       existence of the file /proc/sys/kernel/perf_event_paranoid.

BUGS
       The F_SETOWN_EX option to fcntl(2) is needed to properly get overflow signals in  threads.
       This was introduced in Linux 2.6.32.

       Prior  to  Linux  2.6.33  (at  least for x86), the kernel did not check if events could be
       scheduled together until read time.  The same happens on all  known  kernels  if  the  NMI
       watchdog  is  enabled.   This  means  to  see  if  a given set of events works you have to
       perf_event_open(), start, then read before you know for sure you can  get  valid  measure‐
       ments.

       Prior  to  Linux 2.6.34, event constraints were not enforced by the kernel.  In that case,
       some events would silently return "0" if the kernel scheduled them in an improper  counter
       slot.

       Prior  to Linux 2.6.34, there was a bug when multiplexing where the wrong results could be
       returned.

       Kernels from Linux 2.6.35 to Linux 2.6.39 can quickly crash the  kernel  if  "inherit"  is
       enabled and many threads are started.

       Prior to Linux 2.6.35, PERF_FORMAT_GROUP did not work with attached processes.

       In  older Linux 2.6 versions, refreshing an event group leader refreshed all siblings, and
       refreshing with a parameter of 0 enabled infinite refresh.  This behavior  is  unsupported
       and should not be relied on.

       There  is  a  bug  in  the kernel code between Linux 2.6.36 and Linux 3.0 that ignores the
       "watermark" field and acts as if a wakeup_event was chosen if  the  union  has  a  nonzero
       value in it.

       From  Linux  2.6.31  to  Linux  3.4, the PERF_IOC_FLAG_GROUP ioctl argument was broken and
       would repeatedly operate on the event specified rather than iterating across  all  sibling
       events in a group.

       From  Linux  3.4 to Linux 3.11, the mmap cap_usr_rdpmc and cap_usr_time bits mapped to the
       same location.  Code should migrate to the new  cap_user_rdpmc  and  cap_user_time  fields
       instead.

       Always  double-check your results!  Various generalized events have had wrong values.  For
       example, retired branches measured the wrong thing on AMD machines until Linux 2.6.35.

EXAMPLE
       The following is a short example that measures the total instruction count of  a  call  to
       printf(3).

       #include <stdlib.h>
       #include <stdio.h>
       #include <unistd.h>
       #include <string.h>
       #include <sys/ioctl.h>
       #include <linux/perf_event.h>
       #include <asm/unistd.h>

       static long
       perf_event_open(struct perf_event_attr *hw_event, pid_t pid,
                       int cpu, int group_fd, unsigned long flags)
       {
           int ret;

           ret = syscall(__NR_perf_event_open, hw_event, pid, cpu,
                          group_fd, flags);
           return ret;
       }

       int
       main(int argc, char **argv)
       {
           struct perf_event_attr pe;
           long long count;
           int fd;

           memset(&pe, 0, sizeof(struct perf_event_attr));
           pe.type = PERF_TYPE_HARDWARE;
           pe.size = sizeof(struct perf_event_attr);
           pe.config = PERF_COUNT_HW_INSTRUCTIONS;
           pe.disabled = 1;
           pe.exclude_kernel = 1;
           pe.exclude_hv = 1;

           fd = perf_event_open(&pe, 0, -1, -1, 0);
           if (fd == -1) {
              fprintf(stderr, "Error opening leader %llx\n", pe.config);
              exit(EXIT_FAILURE);
           }

           ioctl(fd, PERF_EVENT_IOC_RESET, 0);
           ioctl(fd, PERF_EVENT_IOC_ENABLE, 0);

           printf("Measuring instruction count for this printf\n");

           ioctl(fd, PERF_EVENT_IOC_DISABLE, 0);
           read(fd, &count, sizeof(long long));

           printf("Used %lld instructions\n", count);

           close(fd);
       }

SEE ALSO
       fcntl(2), mmap(2), open(2), prctl(2), read(2)

COLOPHON
       This  page  is  part of release 3.74 of the Linux man-pages project.  A description of the
       project, information about reporting bugs, and the latest version of  this  page,  can  be
       found at http://www.kernel.org/doc/man-pages/.



Linux                                       2014-08-19                         PERF_EVENT_OPEN(2)


/man
rootr.net - man pages