| vdso(7) - phpMan
VDSO(7) Linux Programmer's Manual VDSO(7)
NAME
vDSO - overview of the virtual ELF dynamic shared object
SYNOPSIS
#include <sys/auxv.h>
void *vdso = (uintptr_t) getauxval(AT_SYSINFO_EHDR);
DESCRIPTION
The "vDSO" (virtual dynamic shared object) is a small shared library that the kernel auto‐
matically maps into the address space of all user-space applications. Applications usu‐
ally do not need to concern themselves with these details as the vDSO is most commonly
called by the C library. This way you can code in the normal way using standard functions
and the C library will take care of using any functionality that is available via the
vDSO.
Why does the vDSO exist at all? There are some system calls the kernel provides that
user-space code ends up using frequently, to the point that such calls can dominate over‐
all performance. This is due both to the frequency of the call as well as the context-
switch overhead that results from exiting user space and entering the kernel.
The rest of this documentation is geared toward the curious and/or C library writers
rather than general developers. If you're trying to call the vDSO in your own application
rather than using the C library, you're most likely doing it wrong.
Example background
Making system calls can be slow. In x86 32-bit systems, you can trigger a software inter‐
rupt (int $0x80) to tell the kernel you wish to make a system call. However, this
instruction is expensive: it goes through the full interrupt-handling paths in the proces‐
sor's microcode as well as in the kernel. Newer processors have faster (but backward
incompatible) instructions to initiate system calls. Rather than require the C library to
figure out if this functionality is available at run time, the C library can use functions
provided by the kernel in the vDSO.
Note that the terminology can be confusing. On x86 systems, the vDSO function used to
determine the preferred method of making a system call is named "__kernel_vsyscall", but
on x86_64, the term "vsyscall" also refers to an obsolete way to ask the kernel what time
it is or what CPU the caller is on.
One frequently used system call is gettimeofday(2). This system call is called both
directly by user-space applications as well as indirectly by the C library. Think time‐
stamps or timing loops or polling—all of these frequently need to know what time it is
right now. This information is also not secret—any application in any privilege mode
(root or any unprivileged user) will get the same answer. Thus the kernel arranges for
the information required to answer this question to be placed in memory the process can
access. Now a call to gettimeofday(2) changes from a system call to a normal function
call and a few memory accesses.
Finding the vDSO
The base address of the vDSO (if one exists) is passed by the kernel to each program in
the initial auxiliary vector (see getauxval(3)), via the AT_SYSINFO_EHDR tag.
You must not assume the vDSO is mapped at any particular location in the user's memory
map. The base address will usually be randomized at run time every time a new process
image is created (at execve(2) time). This is done for security reasons, to prevent
"return-to-libc" attacks.
For some architectures, there is also an AT_SYSINFO tag. This is used only for locating
the vsyscall entry point and is frequently omitted or set to 0 (meaning it's not avail‐
able). This tag is a throwback to the initial vDSO work (see History below) and its use
should be avoided.
File format
Since the vDSO is a fully formed ELF image, you can do symbol lookups on it. This allows
new symbols to be added with newer kernel releases, and allows the C library to detect
available functionality at run time when running under different kernel versions. Often‐
times the C library will do detection with the first call and then cache the result for
subsequent calls.
All symbols are also versioned (using the GNU version format). This allows the kernel to
update the function signature without breaking backward compatibility. This means chang‐
ing the arguments that the function accepts as well as the return value. Thus, when look‐
ing up a symbol in the vDSO, you must always include the version to match the ABI you
expect.
Typically the vDSO follows the naming convention of prefixing all symbols with "__vdso_"
or "__kernel_" so as to distinguish them from other standard symbols. For example, the
"gettimeofday" function is named "__vdso_gettimeofday".
You use the standard C calling conventions when calling any of these functions. No need
to worry about weird register or stack behavior.
NOTES
Source
When you compile the kernel, it will automatically compile and link the vDSO code for you.
You will frequently find it under the architecture-specific directory:
find arch/$ARCH/ -name '*vdso*.so*' -o -name '*gate*.so*'
vDSO names
The name of the vDSO varies across architectures. It will often show up in things like
glibc's ldd(1) output. The exact name should not matter to any code, so do not hardcode
it.
user ABI vDSO name
─────────────────────────────
aarch64 linux-vdso.so.1
ia64 linux-gate.so.1
ppc/32 linux-vdso32.so.1
ppc/64 linux-vdso64.so.1
s390 linux-vdso32.so.1
s390x linux-vdso64.so.1
sh linux-gate.so.1
i386 linux-gate.so.1
x86_64 linux-vdso.so.1
x86/x32 linux-vdso.so.1
ARCHITECTURE-SPECIFIC NOTES
The subsections below provide architecture-specific notes on the vDSO.
Note that the vDSO that is used is based on the ABI of your user-space code and not the
ABI of the kernel. Thus, for example, when you run an i386 32-bit ELF binary, you'll get
the same vDSO regardless of whether you run it under an i386 32-bit kernel or under an
x86_64 64-bit kernel. Therefore, the name of the user-space ABI should be used to deter‐
mine which of the sections below is relevant.
ARM functions
The ARM port has a code page full of utility functions. Since it's just a raw page of
code, there is no ELF information for doing symbol lookups or versioning. It does provide
support for different versions though.
For information on this code page, it's best to refer to the kernel documentation as it's
extremely detailed and covers everything you need to know: Documentation/arm/ker‐
nel_user_helpers.txt.
aarch64 functions
The table below lists the symbols exported by the vDSO.
symbol version
──────────────────────────────────────
__kernel_rt_sigreturn LINUX_2.6.39
__kernel_gettimeofday LINUX_2.6.39
__kernel_clock_gettime LINUX_2.6.39
__kernel_clock_getres LINUX_2.6.39
bfin (Blackfin) functions
As this CPU lacks a memory management unit (MMU), it doesn't set up a vDSO in the normal
sense. Instead, it maps at boot time a few raw functions into a fixed location in memory.
User-space applications then call directly into that region. There is no provision for
backward compatibility beyond sniffing raw opcodes, but as this is an embedded CPU, it can
get away with things—some of the object formats it runs aren't even ELF based (they're
bFLT/FLAT).
For information on this code page, it's best to refer to the public documentation:
http://docs.blackfin.uclinux.org/doku.php?id=linux-kernel:fixed-code
ia64 (Itanium) functions
The table below lists the symbols exported by the vDSO.
symbol version
───────────────────────────────────────
__kernel_sigtramp LINUX_2.5
__kernel_syscall_via_break LINUX_2.5
__kernel_syscall_via_epc LINUX_2.5
The Itanium port is somewhat tricky. In addition to the vDSO above, it also has "light-
weight system calls" (also known as "fast syscalls" or "fsys"). You can invoke these via
the __kernel_syscall_via_epc vDSO helper. The system calls listed here have the same
semantics as if you called them directly via syscall(2), so refer to the relevant documen‐
tation for each. The table below lists the functions available via this mechanism.
function
────────────────
clock_gettime
getcpu
getpid
getppid
gettimeofday
set_tid_address
parisc (hppa) functions
The parisc port has a code page full of utility functions called a gateway page. Rather
than use the normal ELF auxiliary vector approach, it passes the address of the page to
the process via the SR2 register. The permissions on the page are such that merely exe‐
cuting those addresses automatically executes with kernel privileges and not in user
space. This is done to match the way HP-UX works.
Since it's just a raw page of code, there is no ELF information for doing symbol lookups
or versioning. Simply call into the appropriate offset via the branch instruction, for
example:
ble <offset>(%sr2, %r0)
offset function
───────────────────────────────────────
00b0 lws_entry
00e0 set_thread_pointer
0100 linux_gateway_entry (syscall)
0268 syscall_nosys
0274 tracesys
0324 tracesys_next
0368 tracesys_exit
03a0 tracesys_sigexit
03b8 lws_start
03dc lws_exit_nosys
03e0 lws_exit
03e4 lws_compare_and_swap64
03e8 lws_compare_and_swap
0404 cas_wouldblock
0410 cas_action
ppc/32 functions
The table below lists the symbols exported by the vDSO. The functions marked with a * are
available only when the kernel is a PowerPC64 (64-bit) kernel.
symbol version
────────────────────────────────────────
__kernel_clock_getres LINUX_2.6.15
__kernel_clock_gettime LINUX_2.6.15
__kernel_datapage_offset LINUX_2.6.15
__kernel_get_syscall_map LINUX_2.6.15
__kernel_get_tbfreq LINUX_2.6.15
__kernel_getcpu * LINUX_2.6.15
__kernel_gettimeofday LINUX_2.6.15
__kernel_sigtramp_rt32 LINUX_2.6.15
__kernel_sigtramp32 LINUX_2.6.15
__kernel_sync_dicache LINUX_2.6.15
__kernel_sync_dicache_p5 LINUX_2.6.15
ppc/64 functions
The table below lists the symbols exported by the vDSO.
symbol version
────────────────────────────────────────
__kernel_clock_getres LINUX_2.6.15
__kernel_clock_gettime LINUX_2.6.15
__kernel_datapage_offset LINUX_2.6.15
__kernel_get_syscall_map LINUX_2.6.15
__kernel_get_tbfreq LINUX_2.6.15
__kernel_getcpu LINUX_2.6.15
__kernel_gettimeofday LINUX_2.6.15
__kernel_sigtramp_rt64 LINUX_2.6.15
__kernel_sync_dicache LINUX_2.6.15
__kernel_sync_dicache_p5 LINUX_2.6.15
s390 functions
The table below lists the symbols exported by the vDSO.
symbol version
──────────────────────────────────────
__kernel_clock_getres LINUX_2.6.29
__kernel_clock_gettime LINUX_2.6.29
__kernel_gettimeofday LINUX_2.6.29
s390x functions
The table below lists the symbols exported by the vDSO.
symbol version
──────────────────────────────────────
__kernel_clock_getres LINUX_2.6.29
__kernel_clock_gettime LINUX_2.6.29
__kernel_gettimeofday LINUX_2.6.29
sh (SuperH) functions
The table below lists the symbols exported by the vDSO.
symbol version
──────────────────────────────────
__kernel_rt_sigreturn LINUX_2.6
__kernel_sigreturn LINUX_2.6
__kernel_vsyscall LINUX_2.6
i386 functions
The table below lists the symbols exported by the vDSO.
symbol version
──────────────────────────────────────────────────────────────
__kernel_sigreturn LINUX_2.5
__kernel_rt_sigreturn LINUX_2.5
__kernel_vsyscall LINUX_2.5
__vdso_clock_gettime LINUX_2.6 (exported since Linux 3.15)
__vdso_gettimeofday LINUX_2.6 (exported since Linux 3.15)
__vdso_time LINUX_2.6 (exported since Linux 3.15)
x86_64 functions
The table below lists the symbols exported by the vDSO. All of these symbols are also
available without the "__vdso_" prefix, but you should ignore those and stick to the names
below.
symbol version
─────────────────────────────────
__vdso_clock_gettime LINUX_2.6
__vdso_getcpu LINUX_2.6
__vdso_gettimeofday LINUX_2.6
__vdso_time LINUX_2.6
x86/x32 functions
The table below lists the symbols exported by the vDSO.
symbol version
─────────────────────────────────
__vdso_clock_gettime LINUX_2.6
__vdso_getcpu LINUX_2.6
__vdso_gettimeofday LINUX_2.6
__vdso_time LINUX_2.6
History
The vDSO was originally just a single function—the vsyscall. In older kernels, you might
see that name in a process's memory map rather than "vdso". Over time, people realized
that this mechanism was a great way to pass more functionality to user space, so it was
reconceived as a vDSO in the current format.
SEE ALSO
syscalls(2), getauxval(3), proc(5)
The documents, examples, and source code in the Linux source code tree:
Documentation/ABI/stable/vdso
Documentation/ia64/fsys.txt
Documentation/vDSO/* (includes examples of using the vDSO)
find arch/ -iname '*vdso*' -o -iname '*gate*'
COLOPHON
This page is part of release 3.74 of the Linux man-pages project. A description of the
project, information about reporting bugs, and the latest version of this page, can be
found at http://www.kernel.org/doc/man-pages/.
Linux 2014-08-19 VDSO(7)
|