:: RootR ::  Hosting Order Map Login   Secure Inter-Network Operations  
Test::More - phpMan

Command: man perldoc info search(apropos)  

Test::More(3pm)                User Contributed Perl Documentation                Test::More(3pm)

       Test::More - yet another framework for writing test scripts

         use Test::More tests => 23;
         # or
         use Test::More skip_all => $reason;
         # or
         use Test::More;   # see done_testing()

         require_ok( 'Some::Module' );

         # Various ways to say "ok"
         ok($got eq $expected, $test_name);

         is  ($got, $expected, $test_name);
         isnt($got, $expected, $test_name);

         # Rather than print STDERR "# here's what went wrong\n"
         diag("here's what went wrong");

         like  ($got, qr/expected/, $test_name);
         unlike($got, qr/expected/, $test_name);

         cmp_ok($got, '==', $expected, $test_name);

         is_deeply($got_complex_structure, $expected_complex_structure, $test_name);

         SKIP: {
             skip $why, $how_many unless $have_some_feature;

             ok( foo(),       $test_name );
             is( foo(42), 23, $test_name );

         TODO: {
             local $TODO = $why;

             ok( foo(),       $test_name );
             is( foo(42), 23, $test_name );

         can_ok($module, @methods);
         isa_ok($object, $class);



         # UNIMPLEMENTED!!!
         my @status = Test::More::status;

       STOP! If you're just getting started writing tests, have a look at Test2::Suite first.

       This is a drop in replacement for Test::Simple which you can switch to once you get the
       hang of basic testing.

       The purpose of this module is to provide a wide range of testing utilities.  Various ways
       to say "ok" with better diagnostics, facilities to skip tests, test future features and
       compare complicated data structures.  While you can do almost anything with a simple
       "ok()" function, it doesn't provide good diagnostic output.

   I love it when a plan comes together
       Before anything else, you need a testing plan.  This basically declares how many tests
       your script is going to run to protect against premature failure.

       The preferred way to do this is to declare a plan when you "use Test::More".

         use Test::More tests => 23;

       There are cases when you will not know beforehand how many tests your script is going to
       run.  In this case, you can declare your tests at the end.

         use Test::More;

         ... run your tests ...

         done_testing( $number_of_tests_run );

       NOTE "done_testing()" should never be called in an "END { ... }" block.

       Sometimes you really don't know how many tests were run, or it's too difficult to
       calculate.  In which case you can leave off $number_of_tests_run.

       In some cases, you'll want to completely skip an entire testing script.

         use Test::More skip_all => $skip_reason;

       Your script will declare a skip with the reason why you skipped and exit immediately with
       a zero (success).  See Test::Harness for details.

       If you want to control what functions Test::More will export, you have to use the 'import'
       option.  For example, to import everything but 'fail', you'd do:

         use Test::More tests => 23, import => ['!fail'];

       Alternatively, you can use the "plan()" function.  Useful for when you have to calculate
       the number of tests.

         use Test::More;
         plan tests => keys %Stuff * 3;

       or for deciding between running the tests at all:

         use Test::More;
         if( $^O eq 'MacOS' ) {
             plan skip_all => 'Test irrelevant on MacOS';
         else {
             plan tests => 42;


           If you don't know how many tests you're going to run, you can issue the plan when
           you're done running tests.

           $number_of_tests is the same as "plan()", it's the number of tests you expected to
           run.  You can omit this, in which case the number of tests you ran doesn't matter,
           just the fact that your tests ran to conclusion.

           This is safer than and replaces the "no_plan" plan.

           Note: You must never put "done_testing()" inside an "END { ... }" block.  The plan is
           there to ensure your test does not exit before testing has completed. If you use an
           END block you completely bypass this protection.

   Test names
       By convention, each test is assigned a number in order.  This is largely done
       automatically for you.  However, it's often very useful to assign a name to each test.
       Which would you rather see:

         ok 4
         not ok 5
         ok 6


         ok 4 - basic multi-variable
         not ok 5 - simple exponential
         ok 6 - force == mass * acceleration

       The later gives you some idea of what failed.  It also makes it easier to find the test in
       your script, simply search for "simple exponential".

       All test functions take a name argument.  It's optional, but highly suggested that you use

   I'm ok, you're not ok.
       The basic purpose of this module is to print out either "ok #" or "not ok #" depending on
       if a given test succeeded or failed.  Everything else is just gravy.

       All of the following print "ok" or "not ok" depending on if the test succeeded or failed.
       They all also return true or false, respectively.

             ok($got eq $expected, $test_name);

           This simply evaluates any expression ("$got eq $expected" is just a simple example)
           and uses that to determine if the test succeeded or failed.  A true expression passes,
           a false one fails.  Very simple.

           For example:

               ok( $exp{9} == 81,                   'simple exponential' );
               ok( Film->can('db_Main'),            'set_db()' );
               ok( $p->tests == 4,                  'saw tests' );
               ok( !grep(!defined $_, @items),      'all items defined' );

           (Mnemonic:  "This is ok.")

           $test_name is a very short description of the test that will be printed out.  It makes
           it very easy to find a test in your script when it fails and gives others an idea of
           your intentions.  $test_name is optional, but we very strongly encourage its use.

           Should an "ok()" fail, it will produce some diagnostics:

               not ok 18 - sufficient mucus
               #   Failed test 'sufficient mucus'
               #   in foo.t at line 42.

           This is the same as Test::Simple's "ok()" routine.

             is  ( $got, $expected, $test_name );
             isnt( $got, $expected, $test_name );

           Similar to "ok()", "is()" and "isnt()" compare their two arguments with "eq" and "ne"
           respectively and use the result of that to determine if the test succeeded or failed.
           So these:

               # Is the ultimate answer 42?
               is( ultimate_answer(), 42,          "Meaning of Life" );

               # $foo isn't empty
               isnt( $foo, '',     "Got some foo" );

           are similar to these:

               ok( ultimate_answer() eq 42,        "Meaning of Life" );
               ok( $foo ne '',     "Got some foo" );

           "undef" will only ever match "undef".  So you can test a value against "undef" like

               is($not_defined, undef, "undefined as expected");

           (Mnemonic:  "This is that."  "This isn't that.")

           So why use these?  They produce better diagnostics on failure.  "ok()" cannot know
           what you are testing for (beyond the name), but "is()" and "isnt()" know what the test
           was and why it failed.  For example this test:

               my $foo = 'waffle';  my $bar = 'yarblokos';
               is( $foo, $bar,   'Is foo the same as bar?' );

           Will produce something like this:

               not ok 17 - Is foo the same as bar?
               #   Failed test 'Is foo the same as bar?'
               #   in foo.t at line 139.
               #          got: 'waffle'
               #     expected: 'yarblokos'

           So you can figure out what went wrong without rerunning the test.

           You are encouraged to use "is()" and "isnt()" over "ok()" where possible, however do
           not be tempted to use them to find out if something is true or false!

             # XXX BAD!
             is( exists $brooklyn{tree}, 1, 'A tree grows in Brooklyn' );

           This does not check if "exists $brooklyn{tree}" is true, it checks if it returns 1.
           Very different.  Similar caveats exist for false and 0.  In these cases, use "ok()".

             ok( exists $brooklyn{tree},    'A tree grows in Brooklyn' );

           A simple call to "isnt()" usually does not provide a strong test but there are cases
           when you cannot say much more about a value than that it is different from some other

             new_ok $obj, "Foo";

             my $clone = $obj->clone;
             isa_ok $obj, "Foo", "Foo->clone";

             isnt $obj, $clone, "clone() produces a different object";

           Historically we supported an "isn't()" function as an alias of "isnt()", however in
           Perl 5.37.9 support for the use of aprostrophe as a package separator was deprecated
           and by Perl 5.42.0 support for it will have been removed completely. Accordingly use
           of "isn't()" is also deprecated, and will produce warnings when used unless
           'deprecated' warnings are specifically disabled in the scope where it is used. You are
           strongly advised to migrate to using "isnt()" instead.

             like( $got, qr/expected/, $test_name );

           Similar to "ok()", "like()" matches $got against the regex "qr/expected/".

           So this:

               like($got, qr/expected/, 'this is like that');

           is similar to:

               ok( $got =~ m/expected/, 'this is like that');

           (Mnemonic "This is like that".)

           The second argument is a regular expression.  It may be given as a regex reference
           (i.e. "qr//") or (for better compatibility with older perls) as a string that looks
           like a regex (alternative delimiters are currently not supported):

               like( $got, '/expected/', 'this is like that' );

           Regex options may be placed on the end ('/expected/i').

           Its advantages over "ok()" are similar to that of "is()" and "isnt()".  Better
           diagnostics on failure.

             unlike( $got, qr/expected/, $test_name );

           Works exactly as "like()", only it checks if $got does not match the given pattern.

             cmp_ok( $got, $op, $expected, $test_name );

           Halfway between "ok()" and "is()" lies "cmp_ok()".  This allows you to compare two
           arguments using any binary perl operator.  The test passes if the comparison is true
           and fails otherwise.

               # ok( $got eq $expected );
               cmp_ok( $got, 'eq', $expected, 'this eq that' );

               # ok( $got == $expected );
               cmp_ok( $got, '==', $expected, 'this == that' );

               # ok( $got && $expected );
               cmp_ok( $got, '&&', $expected, 'this && that' );

           Its advantage over "ok()" is when the test fails you'll know what $got and $expected

               not ok 1
               #   Failed test in foo.t at line 12.
               #     '23'
               #         &&
               #     undef

           It's also useful in those cases where you are comparing numbers and "is()"'s use of
           "eq" will interfere:

               cmp_ok( $big_hairy_number, '==', $another_big_hairy_number );

           It's especially useful when comparing greater-than or smaller-than relation between

               cmp_ok( $some_value, '<=', $upper_limit );

             can_ok($module, @methods);
             can_ok($object, @methods);

           Checks to make sure the $module or $object can do these @methods (works with
           functions, too).

               can_ok('Foo', qw(this that whatever));

           is almost exactly like saying:

               ok( Foo->can('this') &&
                   Foo->can('that') &&

           only without all the typing and with a better interface.  Handy for quickly testing an

           No matter how many @methods you check, a single "can_ok()" call counts as one test.
           If you desire otherwise, use:

               foreach my $meth (@methods) {
                   can_ok('Foo', $meth);

             isa_ok($object,   $class, $object_name);
             isa_ok($subclass, $class, $object_name);
             isa_ok($ref,      $type,  $ref_name);

           Checks to see if the given "$object->isa($class)".  Also checks to make sure the
           object was defined in the first place.  Handy for this sort of thing:

               my $obj = Some::Module->new;
               isa_ok( $obj, 'Some::Module' );

           where you'd otherwise have to write

               my $obj = Some::Module->new;
               ok( defined $obj && $obj->isa('Some::Module') );

           to safeguard against your test script blowing up.

           You can also test a class, to make sure that it has the right ancestor:

               isa_ok( 'Vole', 'Rodent' );

           It works on references, too:

               isa_ok( $array_ref, 'ARRAY' );

           The diagnostics of this test normally just refer to 'the object'.  If you'd like them
           to be more specific, you can supply an $object_name (for example 'Test customer').

             my $obj = new_ok( $class );
             my $obj = new_ok( $class => \@args );
             my $obj = new_ok( $class => \@args, $object_name );

           A convenience function which combines creating an object and calling "isa_ok()" on
           that object.

           It is basically equivalent to:

               my $obj = $class->new(@args);
               isa_ok $obj, $class, $object_name;

           If @args is not given, an empty list will be used.

           This function only works on "new()" and it assumes "new()" will return just a single
           object which isa $class.

               subtest $name => \&code, @args;

           "subtest()" runs the &code as its own little test with its own plan and its own
           result.  The main test counts this as a single test using the result of the whole
           subtest to determine if its ok or not ok.

           For example...

             use Test::More tests => 3;

             pass("First test");

             subtest 'An example subtest' => sub {
                 plan tests => 2;

                 pass("This is a subtest");
                 pass("So is this");

             pass("Third test");

           This would produce.

             ok 1 - First test
                 # Subtest: An example subtest
                 ok 1 - This is a subtest
                 ok 2 - So is this
             ok 2 - An example subtest
             ok 3 - Third test

           A subtest may call "skip_all".  No tests will be run, but the subtest is considered a

             subtest 'skippy' => sub {
                 plan skip_all => 'cuz I said so';
                 pass('this test will never be run');

           Returns true if the subtest passed, false otherwise.

           Due to how subtests work, you may omit a plan if you desire.  This adds an implicit
           "done_testing()" to the end of your subtest.  The following two subtests are

             subtest 'subtest with implicit done_testing()', sub {
                 ok 1, 'subtests with an implicit done testing should work';
                 ok 1, '... and support more than one test';
                 ok 1, '... no matter how many tests are run';

             subtest 'subtest with explicit done_testing()', sub {
                 ok 1, 'subtests with an explicit done testing should work';
                 ok 1, '... and support more than one test';
                 ok 1, '... no matter how many tests are run';

           Extra arguments given to "subtest" are passed to the callback. For example:

               sub my_subtest {
                   my $range = shift;

               for my $range (1, 10, 100, 1000) {
                   subtest "testing range $range", \&my_subtest, $range;


           Sometimes you just want to say that the tests have passed.  Usually the case is you've
           got some complicated condition that is difficult to wedge into an "ok()".  In this
           case, you can simply use "pass()" (to declare the test ok) or fail (for not ok).  They
           are synonyms for ok(1) and ok(0).

           Use these very, very, very sparingly.

   Module tests
       Sometimes you want to test if a module, or a list of modules, can successfully load.  For
       example, you'll often want a first test which simply loads all the modules in the
       distribution to make sure they work before going on to do more complicated testing.

       For such purposes we have "use_ok" and "require_ok".


           Tries to "require" the given $module or $file.  If it loads successfully, the test
           will pass.  Otherwise it fails and displays the load error.

           "require_ok" will guess whether the input is a module name or a filename.

           No exception will be thrown if the load fails.

               # require Some::Module
               require_ok "Some::Module";

               # require "Some/File.pl";
               require_ok "Some/File.pl";

               # stop testing if any of your modules will not load
               for my $module (@module) {
                   require_ok $module or BAIL_OUT "Can't load $module";

              BEGIN { use_ok($module); }
              BEGIN { use_ok($module, @imports); }

           Like "require_ok", but it will "use" the $module in question and only loads modules,
           not files.

           If you just want to test a module can be loaded, use "require_ok".

           If you just want to load a module in a test, we recommend simply using "use" directly.
           It will cause the test to stop.

           It's recommended that you run "use_ok()" inside a BEGIN block so its functions are
           exported at compile-time and prototypes are properly honored.

           If @imports are given, they are passed through to the use.  So this:

              BEGIN { use_ok('Some::Module', qw(foo bar)) }

           is like doing this:

              use Some::Module qw(foo bar);

           Version numbers can be checked like so:

              # Just like "use Some::Module 1.02"
              BEGIN { use_ok('Some::Module', 1.02) }

           Don't try to do this:

              BEGIN {

                  ...some code that depends on the use...
                  ...happening at compile time...

           because the notion of "compile-time" is relative.  Instead, you want:

             BEGIN { use_ok('Some::Module') }
             BEGIN { ...some code that depends on the use... }

           If you want the equivalent of "use Foo ()", use a module but not import anything, use

             BEGIN { require_ok "Foo" }

   Complex data structures
       Not everything is a simple eq check or regex.  There are times you need to see if two data
       structures are equivalent.  For these instances Test::More provides a handful of useful

       NOTE I'm not quite sure what will happen with filehandles.

             is_deeply( $got, $expected, $test_name );

           Similar to "is()", except that if $got and $expected are references, it does a deep
           comparison walking each data structure to see if they are equivalent.  If the two
           structures are different, it will display the place where they start differing.

           "is_deeply()" compares the dereferenced values of references, the references
           themselves (except for their type) are ignored.  This means aspects such as blessing
           and ties are not considered "different".

           "is_deeply()" currently has very limited handling of function reference and globs.  It
           merely checks if they have the same referent.  This may improve in the future.

           Test::Differences and Test::Deep provide more in-depth functionality along these

           NOTE is_deeply() has limitations when it comes to comparing strings and refs:

               my $path = path('.');
               my $hash = {};
               is_deeply( $path, "$path" ); # ok
               is_deeply( $hash, "$hash" ); # fail

           This happens because is_deeply will unoverload all arguments unconditionally.  It is
           probably best not to use is_deeply with overloading. For legacy reasons this is not
           likely to ever be fixed. If you would like a much better tool for this you should see
           Test2::Suite Specifically Test2::Tools::Compare has an "is()" function that works like
           "is_deeply" with many improvements.

       If you pick the right test function, you'll usually get a good idea of what went wrong
       when it failed.  But sometimes it doesn't work out that way.  So here we have ways for you
       to write your own diagnostic messages which are safer than just "print STDERR".


           Prints a diagnostic message which is guaranteed not to interfere with test output.
           Like "print" @diagnostic_message is simply concatenated together.

           Returns false, so as to preserve failure.

           Handy for this sort of thing:

               ok( grep(/foo/, @users), "There's a foo user" ) or
                   diag("Since there's no foo, check that /etc/bar is set up right");

           which would produce:

               not ok 42 - There's a foo user
               #   Failed test 'There's a foo user'
               #   in foo.t at line 52.
               # Since there's no foo, check that /etc/bar is set up right.

           You might remember "ok() or diag()" with the mnemonic "open() or die()".

           NOTE The exact formatting of the diagnostic output is still changing, but it is
           guaranteed that whatever you throw at it won't interfere with the test.


           Like "diag()", except the message will not be seen when the test is run in a harness.
           It will only be visible in the verbose TAP stream.

           Handy for putting in notes which might be useful for debugging, but don't indicate a

               note("Tempfile is $tempfile");

             my @dump = explain @diagnostic_message;

           Will dump the contents of any references in a human readable format.  Usually you want
           to pass this into "note" or "diag".

           Handy for things like...

               is_deeply($have, $want) || diag explain $have;


               note explain \%args;

   Conditional tests
       Sometimes running a test under certain conditions will cause the test script to die.  A
       certain function or method isn't implemented (such as "fork()" on MacOS), some resource
       isn't available (like a net connection) or a module isn't available.  In these cases it's
       necessary to skip tests, or declare that they are supposed to fail but will work in the
       future (a todo test).

       For more details on the mechanics of skip and todo tests see Test::Harness.

       The way Test::More handles this is with a named block.  Basically, a block of tests which
       can be skipped over or made todo.  It's best if I just show you...

       SKIP: BLOCK
             SKIP: {
                 skip $why, $how_many if $condition;

                 ...normal testing code goes here...

           This declares a block of tests that might be skipped, $how_many tests there are, $why
           and under what $condition to skip them.  An example is the easiest way to illustrate:

               SKIP: {
                   eval { require HTML::Lint };

                   skip "HTML::Lint not installed", 2 if $@;

                   my $lint = new HTML::Lint;
                   isa_ok( $lint, "HTML::Lint" );

                   $lint->parse( $html );
                   is( $lint->errors, 0, "No errors found in HTML" );

           If the user does not have HTML::Lint installed, the whole block of code won't be run
           at all.  Test::More will output special ok's which Test::Harness interprets as
           skipped, but passing, tests.

           It's important that $how_many accurately reflects the number of tests in the SKIP
           block so the # of tests run will match up with your plan.  If your plan is "no_plan"
           $how_many is optional and will default to 1.

           It's perfectly safe to nest SKIP blocks.  Each SKIP block must have the label "SKIP",
           or Test::More can't work its magic.

           You don't skip tests which are failing because there's a bug in your program, or for
           which you don't yet have code written.  For that you use TODO.  Read on.

       TODO: BLOCK
               TODO: {
                   local $TODO = $why if $condition;

                   ...normal testing code goes here...

           Declares a block of tests you expect to fail and $why.  Perhaps it's because you
           haven't fixed a bug or haven't finished a new feature:

               TODO: {
                   local $TODO = "URI::Geller not finished";

                   my $card = "Eight of clubs";
                   is( URI::Geller->your_card, $card, 'Is THIS your card?' );

                   my $spoon;
                   is( $spoon, 'bent',    "Spoon bending, that's original" );

           With a todo block, the tests inside are expected to fail.  Test::More will run the
           tests normally, but print out special flags indicating they are "todo".  Test::Harness
           will interpret failures as being ok.  Should anything succeed, it will report it as an
           unexpected success.  You then know the thing you had todo is done and can remove the
           TODO flag.

           The nice part about todo tests, as opposed to simply commenting out a block of tests,
           is that it is like having a programmatic todo list.  You know how much work is left to
           be done, you're aware of what bugs there are, and you'll know immediately when they're

           Once a todo test starts succeeding, simply move it outside the block.  When the block
           is empty, delete it.

           Note that, if you leave $TODO unset or undef, Test::More reports failures as normal.
           This can be useful to mark the tests as expected to fail only in certain conditions,

               TODO: {
                   local $TODO = "$^O doesn't work yet. :(" if !_os_is_supported($^O);


               TODO: {
                   todo_skip $why, $how_many if $condition;

                   ...normal testing code...

           With todo tests, it's best to have the tests actually run.  That way you'll know when
           they start passing.  Sometimes this isn't possible.  Often a failing test will cause
           the whole program to die or hang, even inside an "eval BLOCK" with and using "alarm".
           In these extreme cases you have no choice but to skip over the broken tests entirely.

           The syntax and behavior is similar to a "SKIP: BLOCK" except the tests will be marked
           as failing but todo.  Test::Harness will interpret them as passing.

       When do I use SKIP vs. TODO?
           If it's something the user might not be able to do, use SKIP.  This includes optional
           modules that aren't installed, running under an OS that doesn't have some feature
           (like "fork()" or symlinks), or maybe you need an Internet connection and one isn't

           If it's something the programmer hasn't done yet, use TODO.  This is for any code you
           haven't written yet, or bugs you have yet to fix, but want to put tests in your
           testing script (always a good idea).

   Test control

           Indicates to the harness that things are going so badly all testing should terminate.
           This includes the running of any additional test scripts.

           This is typically used when testing cannot continue such as a critical module failing
           to compile or a necessary external utility not being available such as a database
           connection failing.

           The test will exit with 255.

           For even better control look at Test::Most.

   Discouraged comparison functions
       The use of the following functions is discouraged as they are not actually testing
       functions and produce no diagnostics to help figure out what went wrong.  They were
       written before "is_deeply()" existed because I couldn't figure out how to display a useful
       diff of two arbitrary data structures.

       These functions are usually used inside an "ok()".

           ok( eq_array(\@got, \@expected) );

       "is_deeply()" can do that better and with diagnostics.

           is_deeply( \@got, \@expected );

       They may be deprecated in future versions.

             my $is_eq = eq_array(\@got, \@expected);

           Checks if two arrays are equivalent.  This is a deep check, so multi-level structures
           are handled correctly.

             my $is_eq = eq_hash(\%got, \%expected);

           Determines if the two hashes contain the same keys and values.  This is a deep check.

             my $is_eq = eq_set(\@got, \@expected);

           Similar to "eq_array()", except the order of the elements is not important.  This is a
           deep check, but the irrelevancy of order only applies to the top level.

               ok( eq_set(\@got, \@expected) );

           Is better written:

               is_deeply( [sort @got], [sort @expected] );

           NOTE By historical accident, this is not a true set comparison.  While the order of
           elements does not matter, duplicate elements do.

           NOTE "eq_set()" does not know how to deal with references at the top level.  The
           following is an example of a comparison which might not work:

               eq_set([\1, \2], [\2, \1]);

           Test::Deep contains much better set comparison functions.

   Extending and Embedding Test::More
       Sometimes the Test::More interface isn't quite enough.  Fortunately, Test::More is built
       on top of Test::Builder which provides a single, unified backend for any test library to
       use.  This means two test libraries which both use Test::Builder can be used together in
       the same program.

       If you simply want to do a little tweaking of how the tests behave, you can access the
       underlying Test::Builder object like so:

               my $test_builder = Test::More->builder;

           Returns the Test::Builder object underlying Test::More for you to play with.

       If all your tests passed, Test::Builder will exit with zero (which is normal).  If
       anything failed it will exit with how many failed.  If you run less (or more) tests than
       you planned, the missing (or extras) will be considered failures.  If no tests were ever
       run Test::Builder will throw a warning and exit with 255.  If the test died, even after
       having successfully completed all its tests, it will still be considered a failure and
       will exit with 255.

       So the exit codes are...

           0                   all tests successful
           255                 test died or all passed but wrong # of tests run
           any other number    how many failed (including missing or extras)

       If you fail more than 254 tests, it will be reported as 254.

       NOTE  This behavior may go away in future versions.

       Test::More works with Perls as old as 5.8.1.

       Thread support is not very reliable before 5.10.1, but that's because threads are not very
       reliable before 5.10.1.

       Although Test::More has been a core module in versions of Perl since 5.6.2, Test::More has
       evolved since then, and not all of the features you're used to will be present in the
       shipped version of Test::More. If you are writing a module, don't forget to indicate in
       your package metadata the minimum version of Test::More that you require. For instance, if
       you want to use "done_testing()" but want your test script to run on Perl 5.10.0, you will
       need to explicitly require Test::More > 0.88.

       Key feature milestones include:

           Subtests were released in Test::More 0.94, which came with Perl 5.12.0. Subtests did
           not implicitly call "done_testing()" until 0.96; the first Perl with that fix was Perl
           5.14.0 with 0.98.

           This was released in Test::More 0.88 and first shipped with Perl in 5.10.1 as part of
           Test::More 0.92.

           Although "cmp_ok()" was introduced in 0.40, 0.86 fixed an important bug to make it
           safe for overloaded objects; the fixed first shipped with Perl in 5.10.1 as part of
           Test::More 0.92.

       "new_ok()" "note()" and "explain()"
           These were was released in Test::More 0.82, and first shipped with Perl in 5.10.1 as
           part of Test::More 0.92.

       There is a full version history in the Changes file, and the Test::More versions included
       as core can be found using Module::CoreList:

           $ corelist -a Test::More

       utf8 / "Wide character in print"
           If you use utf8 or other non-ASCII characters with Test::More you might get a "Wide
           character in print" warning.  Using "binmode STDOUT, ":utf8"" will not fix it.
           Test::Builder (which powers Test::More) duplicates STDOUT and STDERR.  So any changes
           to them, including changing their output disciplines, will not be seen by Test::More.

           One work around is to apply encodings to STDOUT and STDERR as early as possible and
           before Test::More (or any other Test module) loads.

               use open ':std', ':encoding(utf8)';
               use Test::More;

           A more direct work around is to change the filehandles used by Test::Builder.

               my $builder = Test::More->builder;
               binmode $builder->output,         ":encoding(utf8)";
               binmode $builder->failure_output, ":encoding(utf8)";
               binmode $builder->todo_output,    ":encoding(utf8)";

       Overloaded objects
           String overloaded objects are compared as strings (or in "cmp_ok()"'s case, strings or
           numbers as appropriate to the comparison op).  This prevents Test::More from piercing
           an object's interface allowing better blackbox testing.  So if a function starts
           returning overloaded objects instead of bare strings your tests won't notice the
           difference.  This is good.

           However, it does mean that functions like "is_deeply()" cannot be used to test the
           internals of string overloaded objects.  In this case I would suggest Test::Deep which
           contains more flexible testing functions for complex data structures.

           Test::More will only be aware of threads if "use threads" has been done before
           Test::More is loaded.  This is ok:

               use threads;
               use Test::More;

           This may cause problems:

               use Test::More
               use threads;

           5.8.1 and above are supported.  Anything below that has too many bugs.

       This is a case of convergent evolution with Joshua Pritikin's Test module.  I was largely
       unaware of its existence when I'd first written my own "ok()" routines.  This module
       exists because I can't figure out how to easily wedge test names into Test's interface
       (along with a few other problems).

       The goal here is to have a testing utility that's simple to learn, quick to use and
       difficult to trip yourself up with while still providing more flexibility than the
       existing Test.pm.  As such, the names of the most common routines are kept tiny, special
       cases and magic side-effects are kept to a minimum.  WYSIWYG.


       Test2::Suite is the most recent and modern set of tools for testing.

       Test::Simple if all this confuses you and you just want to write some tests.  You can
       upgrade to Test::More later (it's forward compatible).

       Test::Legacy tests written with Test.pm, the original testing module, do not play well
       with other testing libraries.  Test::Legacy emulates the Test.pm interface and does play
       well with others.

       Test::Differences for more ways to test complex data structures.  And it plays well with

       Test::Class is like xUnit but more perlish.

       Test::Deep gives you more powerful complex data structure testing.

       Test::Inline shows the idea of embedded testing.

       Mock::Quick The ultimate mocking library. Easily spawn objects defined on the fly. Can
       also override, block, or reimplement packages as needed.

       Test::FixtureBuilder Quickly define fixture data for unit tests.

       Test::Harness is the test runner and output interpreter for Perl.  It's the thing that
       powers "make test" and where the "prove" utility comes from.

       Test::Most Most commonly needed test functions and features.

       Michael G Schwern <schwern AT pobox.com> with much inspiration from Joshua Pritikin's Test
       module and lots of help from Barrie Slaymaker, Tony Bowden, blackstar.co.uk, chromatic,
       Fergal Daly and the perl-qa gang.

       Chad Granum <exodist AT cpan.org>

       See https://github.com/Test-More/test-more/issues to report and view bugs.

       The source code repository for Test::More can be found at

       Copyright 2001-2008 by Michael G Schwern <schwern AT pobox.com>.

       This program is free software; you can redistribute it and/or modify it under the same
       terms as Perl itself.

       See http://www.perl.com/perl/misc/Artistic.html

perl v5.20.2                                2023-11-30                            Test::More(3pm)

rootr.net - man pages