| dhclient.conf(5) - phpMan
dhclient.conf(5) File Formats Manual dhclient.conf(5)
NAME
dhclient.conf - DHCP client configuration file
DESCRIPTION
The dhclient.conf file contains configuration information for dhclient, the Internet Sys‐
tems Consortium DHCP Client.
The dhclient.conf file is a free-form ASCII text file. It is parsed by the recursive-
descent parser built into dhclient. The file may contain extra tabs and newlines for for‐
matting purposes. Keywords in the file are case-insensitive. Comments may be placed any‐
where within the file (except within quotes). Comments begin with the # character and end
at the end of the line.
The dhclient.conf file can be used to configure the behaviour of the client in a wide
variety of ways: protocol timing, information requested from the server, information
required of the server, defaults to use if the server does not provide certain informa‐
tion, values with which to override information provided by the server, or values to
prepend or append to information provided by the server. The configuration file can also
be preinitialized with addresses to use on networks that don't have DHCP servers.
PROTOCOL TIMING
The timing behaviour of the client need not be configured by the user. If no timing con‐
figuration is provided by the user, a fairly reasonable timing behaviour will be used by
default - one which results in fairly timely updates without placing an inordinate load on
the server.
The following statements can be used to adjust the timing behaviour of the DHCP client if
required, however:
The timeout statement
timeout time ;
The timeout statement determines the amount of time that must pass between the time that
the client begins to try to determine its address and the time that it decides that it's
not going to be able to contact a server. By default, this timeout is sixty seconds.
After the timeout has passed, if there are any static leases defined in the configuration
file, or any leases remaining in the lease database that have not yet expired, the client
will loop through these leases attempting to validate them, and if it finds one that
appears to be valid, it will use that lease's address. If there are no valid static
leases or unexpired leases in the lease database, the client will restart the protocol
after the defined retry interval.
The retry statement
retry time;
The retry statement determines the time that must pass after the client has determined
that there is no DHCP server present before it tries again to contact a DHCP server. By
default, this is five minutes.
The select-timeout statement
select-timeout time;
It is possible (some might say desirable) for there to be more than one DHCP server serv‐
ing any given network. In this case, it is possible that a client may be sent more than
one offer in response to its initial lease discovery message. It may be that one of these
offers is preferable to the other (e.g., one offer may have the address the client previ‐
ously used, and the other may not).
The select-timeout is the time after the client sends its first lease discovery request at
which it stops waiting for offers from servers, assuming that it has received at least one
such offer. If no offers have been received by the time the select-timeout has expired,
the client will accept the first offer that arrives.
By default, the select-timeout is zero seconds - that is, the client will take the first
offer it sees.
The reboot statement
reboot time;
When the client is restarted, it first tries to reacquire the last address it had. This
is called the INIT-REBOOT state. If it is still attached to the same network it was
attached to when it last ran, this is the quickest way to get started. The reboot state‐
ment sets the time that must elapse after the client first tries to reacquire its old
address before it gives up and tries to discover a new address. By default, the reboot
timeout is ten seconds.
The backoff-cutoff statement
backoff-cutoff time;
The client uses an exponential backoff algorithm with some randomness, so that if many
clients try to configure themselves at the same time, they will not make their requests in
lockstep. The backoff-cutoff statement determines the maximum amount of time that the
client is allowed to back off, the actual value will be evaluated randomly between 1/2 to
1 1/2 times the time specified. It defaults to fifteen seconds.
The initial-interval statement
initial-interval time;
The initial-interval statement sets the amount of time between the first attempt to reach
a server and the second attempt to reach a server. Each time a message is sent, the
interval between messages is incremented by twice the current interval multiplied by a
random number between zero and one. If it is greater than the backoff-cutoff amount, it
is set to that amount. It defaults to ten seconds.
The initial-delay statement
initial-delay time;
initial-delay parameter sets the maximum time client can wait after start before commenc‐
ing first transmission. According to RFC2131 Section 4.4.1, client should wait a random
time between startup and the actual first transmission. Previous versions of ISC DHCP
client used to wait random time up to 5 seconds, but that was unwanted due to impact on
startup time. As such, new versions have the default initial delay set to 0. To restore
old behavior, please set initial-delay to 5.
LEASE REQUIREMENTS AND REQUESTS
The DHCP protocol allows the client to request that the server send it specific informa‐
tion, and not send it other information that it is not prepared to accept. The protocol
also allows the client to reject offers from servers if they don't contain information the
client needs, or if the information provided is not satisfactory.
There is a variety of data contained in offers that DHCP servers send to DHCP clients.
The data that can be specifically requested is what are called DHCP Options. DHCP Options
are defined in
dhcp-options(5).
The request statement
[ also ] request [ [ option-space . ] option ] [, ... ];
The request statement causes the client to request that any server responding to the
client send the client its values for the specified options. Only the option names should
be specified in the request statement - not option parameters. By default, the DHCPv4
client requests the subnet-mask, broadcast-address, time-offset, routers, domain-name,
domain-name-servers and host-name options while the DHCPv6 client requests the dhcp6 name-
servers and domain-search options. Note that if you enter a ´request´ statement, you
over-ride these defaults and these options will not be requested.
In some cases, it may be desirable to send no parameter request list at all. To do this,
simply write the request statement but specify no parameters:
request;
In most cases, it is desirable to simply add one option to the request list which is of
interest to the client in question. In this case, it is best to ´also request´ the addi‐
tional options:
also request domain-search, dhcp6.sip-servers-addresses;
The require statement
[ also ] require [ [ option-space . ] option ] [, ... ];
The require statement lists options that must be sent in order for an offer to be
accepted. Offers that do not contain all the listed options will be ignored. There is no
default require list.
require name-servers;
interface eth0 {
also require domain-search;
}
The
send
statement
send { [ option declaration ]
[, ... option declaration ]}
The send statement causes the client to send the specified options to
the server with the specified values. These are full option
declarations as described in dhcp-options(5). Options that are
always sent in the DHCP protocol should not be specified here, except
that the client can specify a requested dhcp-lease-time option other
than the default requested lease time, which is two hours. The other
obvious use for this statement is to send information to the server
that will allow it to differentiate between this client and other
clients or kinds of clients.
DYNAMIC DNS
The client now has some very limited support for doing DNS updates when a lease is
acquired. This is prototypical, and probably doesn't do what you want. It also only
works if you happen to have control over your DNS server, which isn't very likely.
Note that everything in this section is true whether you are using DHCPv4 or DHCPv6. The
exact same syntax is used for both.
To make it work, you have to declare a key and zone as in the DHCP server (see
dhcpd.conf(5) for details). You also need to configure the fqdn option on the client, as
follows:
send fqdn.fqdn "grosse.fugue.com.";
send fqdn.encoded on;
send fqdn.server-update off;
also request fqdn, dhcp6.fqdn;
The fqdn.fqdn option MUST be a fully-qualified domain name. You MUST define a zone state‐
ment for the zone to be updated. The fqdn.encoded option may need to be set to on or off,
depending on the DHCP server you are using.
The do-forward-updates statement
do-forward-updates [ flag ] ;
If you want to do DNS updates in the DHCP client script (see dhclient-script(8)) rather
than having the DHCP client do the update directly (for example, if you want to use SIG(0)
authentication, which is not supported directly by the DHCP client, you can instruct the
client not to do the update using the do-forward-updates statement. Flag should be true
if you want the DHCP client to do the update, and false if you don't want the DHCP client
to do the update. By default, the DHCP client will do the DNS update.
OPTION MODIFIERS
In some cases, a client may receive option data from the server which is not really appro‐
priate for that client, or may not receive information that it needs, and for which a use‐
ful default value exists. It may also receive information which is useful, but which
needs to be supplemented with local information. To handle these needs, several option
modifiers are available.
The default statement
default [ option declaration ] ;
If for some option the client should use the value supplied by the server, but needs to
use some default value if no value was supplied by the server, these values can be defined
in the default statement.
The supersede statement
supersede [ option declaration ] ;
If for some option the client should always use a locally-configured value or values
rather than whatever is supplied by the server, these values can be defined in the super‐
sede statement.
The prepend statement
prepend [ option declaration ] ;
If for some set of options the client should use a value you supply, and then use the val‐
ues supplied by the server, if any, these values can be defined in the prepend statement.
The prepend statement can only be used for options which allow more than one value to be
given. This restriction is not enforced - if you ignore it, the behaviour will be unpre‐
dictable.
The append statement
append [ option declaration ] ;
If for some set of options the client should first use the values supplied by the server,
if any, and then use values you supply, these values can be defined in the append state‐
ment. The append statement can only be used for options which allow more than one value
to be given. This restriction is not enforced - if you ignore it, the behaviour will be
unpredictable.
LEASE DECLARATIONS
The lease declaration
lease { lease-declaration [ ... lease-declaration ] }
The DHCP client may decide after some period of time (see PROTOCOL TIMING) that it is not
going to succeed in contacting a server. At that time, it consults its own database of
old leases and tests each one that has not yet timed out by pinging the listed router for
that lease to see if that lease could work. It is possible to define one or more fixed
leases in the client configuration file for networks where there is no DHCP or BOOTP ser‐
vice, so that the client can still automatically configure its address. This is done with
the lease statement.
NOTE: the lease statement is also used in the dhclient.leases file in order to record
leases that have been received from DHCP servers. Some of the syntax for leases as
described below is only needed in the dhclient.leases file. Such syntax is documented
here for completeness.
A lease statement consists of the lease keyword, followed by a left curly brace, followed
by one or more lease declaration statements, followed by a right curly brace. The follow‐
ing lease declarations are possible:
bootp;
The bootp statement is used to indicate that the lease was acquired using the BOOTP proto‐
col rather than the DHCP protocol. It is never necessary to specify this in the client
configuration file. The client uses this syntax in its lease database file.
interface "string";
The interface lease statement is used to indicate the interface on which the lease is
valid. If set, this lease will only be tried on a particular interface. When the client
receives a lease from a server, it always records the interface number on which it
received that lease. If predefined leases are specified in the dhclient.conf file, the
interface should also be specified, although this is not required.
fixed-address ip-address;
The fixed-address statement is used to set the ip address of a particular lease. This is
required for all lease statements. The IP address must be specified as a dotted quad
(e.g., 12.34.56.78).
filename "string";
The filename statement specifies the name of the boot filename to use. This is not used
by the standard client configuration script, but is included for completeness.
server-name "string";
The server-name statement specifies the name of the boot server name to use. This is also
not used by the standard client configuration script.
option option-declaration;
The option statement is used to specify the value of an option supplied by the server, or,
in the case of predefined leases declared in dhclient.conf, the value that the user wishes
the client configuration script to use if the predefined lease is used.
script "script-name";
The script statement is used to specify the pathname of the dhcp client configuration
script. This script is used by the dhcp client to set each interface's initial configura‐
tion prior to requesting an address, to test the address once it has been offered, and to
set the interface's final configuration once a lease has been acquired. If no lease is
acquired, the script is used to test predefined leases, if any, and also called once if no
valid lease can be identified. For more information, see dhclient-script(8).
vendor option space "name";
The vendor option space statement is used to specify which option space should be used for
decoding the vendor-encapsulate-options option if one is received. The dhcp-vendor-iden‐
tifier can be used to request a specific class of vendor options from the server. See
dhcp-options(5) for details.
medium "media setup";
The medium statement can be used on systems where network interfaces cannot automatically
determine the type of network to which they are connected. The media setup string is a
system-dependent parameter which is passed to the dhcp client configuration script when
initializing the interface. On Unix and Unix-like systems, the argument is passed on the
ifconfig command line when configuring the interface.
The dhcp client automatically declares this parameter if it uses a media type (see the
media statement) when configuring the interface in order to obtain a lease. This state‐
ment should be used in predefined leases only if the network interface requires media type
configuration.
renew date;
rebind date;
expire date;
The renew statement defines the time at which the dhcp client should begin trying to con‐
tact its server to renew a lease that it is using. The rebind statement defines the time
at which the dhcp client should begin to try to contact any dhcp server in order to renew
its lease. The expire statement defines the time at which the dhcp client must stop using
a lease if it has not been able to contact a server in order to renew it.
These declarations are automatically set in leases acquired by the DHCP client, but must
also be configured in predefined leases - a predefined lease whose expiry time has passed
will not be used by the DHCP client.
Dates are specified in one of two ways. The software will output times in these two for‐
mats depending on if the db-time-format configuration parameter has been set to default or
local.
If it is set to default, then date values appear as follows:
<weekday> <year>/<month>/<day> <hour>:<minute>:<second>
The weekday is present to make it easy for a human to tell when a lease expires - it's
specified as a number from zero to six, with zero being Sunday. When declaring a prede‐
fined lease, it can always be specified as zero. The year is specified with the century,
so it should generally be four digits except for really long leases. The month is speci‐
fied as a number starting with 1 for January. The day of the month is likewise specified
starting with 1. The hour is a number between 0 and 23, the minute a number between 0 and
59, and the second also a number between 0 and 59.
If the db-time-format configuration was set to local, then the date values appear as fol‐
lows:
epoch <seconds-since-epoch>; # <day-name> <month-name> <day-number> <hours>:<min‐
utes>:<seconds> <year>
The seconds-since-epoch is as according to the system's local clock (often referred to as
"unix time"). The # symbol supplies a comment that describes what actual time this is as
according to the system's configured timezone, at the time the value was written. It is
provided only for human inspection, the epoch time is the only recommended value for
machine inspection.
Note that when defining a static lease, one may use either time format one wishes, and
need not include the comment or values after it.
If the time is infinite in duration, then the date is never instead of an actual date.
ALIAS DECLARATIONS
alias { declarations ... }
Some DHCP clients running TCP/IP roaming protocols may require that in addition to the
lease they may acquire via DHCP, their interface also be configured with a predefined IP
alias so that they can have a permanent IP address even while roaming. The Internet Sys‐
tems Consortium DHCP client doesn't support roaming with fixed addresses directly, but in
order to facilitate such experimentation, the dhcp client can be set up to configure an IP
alias using the alias declaration.
The alias declaration resembles a lease declaration, except that options other than the
subnet-mask option are ignored by the standard client configuration script, and expiry
times are ignored. A typical alias declaration includes an interface declaration, a
fixed-address declaration for the IP alias address, and a subnet-mask option declaration.
A medium statement should never be included in an alias declaration.
OTHER DECLARATIONS
db-time-format [ default | local ] ;
The db-time-format option determines which of two output methods are used for printing
times in leases files. The default format provides day-and-time in UTC, whereas local
uses a seconds-since-epoch to store the time value, and helpfully places a local timezone
time in a comment on the same line. The formats are described in detail in this manpage,
within the LEASE DECLARATIONS section.
reject cidr-ip-address [, ... cidr-ip-address ] ;
The reject statement causes the DHCP client to reject offers from servers whose server
identifier matches any of the specified hosts or subnets. This can be used to avoid being
configured by rogue or misconfigured dhcp servers, although it should be a last resort -
better to track down the bad DHCP server and fix it.
The cidr-ip-address configuration type is of the form ip-address[/prefixlen], where ip-
address is a dotted quad IP address, and prefixlen is the CIDR prefix length of the sub‐
net, counting the number of significant bits in the netmask starting from the leftmost
end. Example configuration syntax:
reject 192.168.0.0/16, 10.0.0.5;
The above example would cause offers from any server identifier in the entire RFC 1918
"Class C" network 192.168.0.0/16, or the specific single address 10.0.0.5, to be rejected.
interface "name" { declarations ... }
A client with more than one network interface may require different behaviour depending on
which interface is being configured. All timing parameters and declarations other than
lease and alias declarations can be enclosed in an interface declaration, and those param‐
eters will then be used only for the interface that matches the specified name. Inter‐
faces for which there is no interface declaration will use the parameters declared outside
of any interface declaration, or the default settings.
Note well: ISC dhclient only maintains one list of interfaces, which is either determined
at startup from command line arguments, or otherwise is autodetected. If you supplied the
list of interfaces on the command line, this configuration clause will add the named
interface to the list in such a way that will cause it to be configured by DHCP. Which
may not be the result you had intended. This is an undesirable side effect that will be
addressed in a future release.
pseudo "name" "real-name" { declarations ... }
Under some circumstances it can be useful to declare a pseudo-interface and have the DHCP
client acquire a configuration for that interface. Each interface that the DHCP client is
supporting normally has a DHCP client state machine running on it to acquire and maintain
its lease. A pseudo-interface is just another state machine running on the interface
named real-name, with its own lease and its own state. If you use this feature, you must
provide a client identifier for both the pseudo-interface and the actual interface, and
the two identifiers must be different. You must also provide a separate client script for
the pseudo-interface to do what you want with the IP address. For example:
interface "ep0" {
send dhcp-client-identifier "my-client-ep0";
}
pseudo "secondary" "ep0" {
send dhcp-client-identifier "my-client-ep0-secondary";
script "/etc/dhclient-secondary";
}
The client script for the pseudo-interface should not configure the interface up or down -
essentially, all it needs to handle are the states where a lease has been acquired or
renewed, and the states where a lease has expired. See dhclient-script(8) for more infor‐
mation.
media "media setup" [ , "media setup", ... ];
The media statement defines one or more media configuration parameters which may be tried
while attempting to acquire an IP address. The dhcp client will cycle through each media
setup string on the list, configuring the interface using that setup and attempting to
boot, and then trying the next one. This can be used for network interfaces which aren't
capable of sensing the media type unaided - whichever media type succeeds in getting a
request to the server and hearing the reply is probably right (no guarantees).
The media setup is only used for the initial phase of address acquisition (the DHCPDIS‐
COVER and DHCPOFFER packets). Once an address has been acquired, the dhcp client will
record it in its lease database and will record the media type used to acquire the
address. Whenever the client tries to renew the lease, it will use that same media type.
The lease must expire before the client will go back to cycling through media types.
hardware link-type mac-address;
The hardware statement defines the hardware MAC address to use for this interface, for
DHCP servers or relays to direct their replies. dhclient will determine the interface's
MAC address automatically, so use of this parameter is not recommended. The link-type
corresponds to the interface's link layer type (example: ´ethernet´), while the mac-
address is a string of colon-separated hexadecimal values for octets.
anycast-mac link-type mac-address;
The anycast-mac statement over-rides the all-ones broadcast MAC address dhclient will use
when it is transmitting packets to the all-ones limited broadcast IPv4 address. This con‐
figuration parameter is useful to reduce the number of broadcast packets transmitted by
DHCP clients, but is only useful if you know the DHCP service(s) anycast MAC address prior
to configuring your client. The link-type and mac-address parameters are configured in a
similar manner to the hardware statement.
SAMPLE
The following configuration file is used on a laptop running NetBSD 1.3. The laptop has
an IP alias of 192.5.5.213, and has one interface, ep0 (a 3com 3C589C). Booting intervals
have been shortened somewhat from the default, because the client is known to spend most
of its time on networks with little DHCP activity. The laptop does roam to multiple net‐
works.
timeout 60;
retry 60;
reboot 10;
select-timeout 5;
initial-interval 2;
reject 192.33.137.209;
interface "ep0" {
send host-name "andare.fugue.com";
hardware ethernet 00:a0:24:ab:fb:9c;
send dhcp-client-identifier 1:0:a0:24:ab:fb:9c;
send dhcp-lease-time 3600;
supersede domain-search "fugue.com", "rc.vix.com", "home.vix.com";
prepend domain-name-servers 127.0.0.1;
request subnet-mask, broadcast-address, time-offset, routers,
domain-name, domain-name-servers, host-name;
require subnet-mask, domain-name-servers;
script "CLIENTBINDIR/dhclient-script";
media "media 10baseT/UTP", "media 10base2/BNC";
}
alias {
interface "ep0";
fixed-address 192.5.5.213;
option subnet-mask 255.255.255.255;
}
This is a very complicated dhclient.conf file - in general, yours should be much simpler.
In many cases, it's sufficient to just create an empty dhclient.conf file - the defaults
are usually fine.
SEE ALSO
dhcp-options(5), dhcp-eval(5), dhclient.leases(5), dhcpd(8), dhcpd.conf(5), RFC2132,
RFC2131.
AUTHOR
dhclient(8) Information about Internet Systems Consortium can be found at
https://www.isc.org.
dhclient.conf(5)
|